89be1927e1ec3d2c6dced0c7f1641e838cab2181
3 # Copyright 2014 MINES ParisTech
5 # This file is part of LinPy.
7 # LinPy is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
12 # LinPy is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
21 import matplotlib
.pyplot
as plt
22 from matplotlib
import pylab
24 a
, x
, y
, z
= symbols('a x y z')
26 sq1
= Le(0, x
) & Le(x
, 2) & Le(0, y
) & Le(y
, 2)
27 sq2
= Le(2, x
) & Le(x
, 4) & Le(2, y
) & Le(y
, 4)
28 sq3
= Le(0, x
) & Le(x
, 3) & Le(0, y
) & Le(y
, 3)
29 sq4
= Le(1, x
) & Le(x
, 2) & Le(1, y
) & Le(y
, 2)
30 sq5
= Le(1, x
) & Le(x
, 2) & Le(1, y
)
31 sq6
= Le(1, x
) & Le(x
, 2) & Le(1, y
) & Le(y
, 3)
32 sq7
= Le(0, x
) & Le(x
, 2) & Le(0, y
) & Eq(z
, 2) & Le(a
, 3)
33 p
= Le(2*x
+1, y
) & Le(-2*x
-1, y
) & Le(y
, 1)
35 universe
= Polyhedron([])
39 print('sq1 =', sq1
) #print correct square
40 print('sq2 =', sq2
) #print correct square
41 print('sq3 =', sq3
) #print correct square
42 print('sq4 =', sq4
) #print correct square
43 print('universe =', universe
) #print correct square
45 print('¬sq1 =', ~sq1
) #test complement
47 print('sq1 + sq1 =', sq1
+ sq2
) #test addition
48 print('sq1 + sq2 =', Polyhedron(sq1
+ sq2
)) #test addition
50 print('universe + universe =', universe
+ universe
)#test addition
51 print('universe - universe =', universe
- universe
) #test subtraction
53 print('sq2 - sq1 =', sq2
- sq1
) #test subtraction
54 print('sq2 - sq1 =', Polyhedron(sq2
- sq1
)) #test subtraction
55 print('sq1 - sq1 =', Polyhedron(sq1
- sq1
)) #test subtraction
57 print('sq1 ∩ sq2 =', sq1
& sq2
) #test intersection
58 print('sq1 ∪ sq2 =', sq1 | sq2
) #test union
60 print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2
)) # test convex union
62 print('check if sq1 and sq2 disjoint:', sq1
.isdisjoint(sq2
)) #should return false
64 print('sq1 disjoint:', sq1
.disjoint()) #make disjoint
65 print('sq2 disjoint:', sq2
.disjoint()) #make disjoint
67 print('is square 1 universe?:', sq1
.isuniverse()) #test if square is universe
68 print('is u universe?:', universe
.isuniverse()) #test if square is universe
70 print('is sq1 a subset of sq2?:', sq1
.issubset(sq2
)) #test issubset()
71 print('is sq4 less than sq3?:', sq4
.__lt__(sq3
)) # test lt(), must be a strict subset
73 print('lexographic min of sq1:', sq1
.lexmin()) #test lexmin()
74 print('lexographic max of sq1:', sq1
.lexmax()) #test lexmin()
76 print('lexographic min of sq2:', sq2
.lexmin()) #test lexmax()
77 print('lexographic max of sq2:', sq2
.lexmax()) #test lexmax()
79 print('Polyhedral hull of sq1 + sq2 is:', q
.aspolyhedron()) #test polyhedral hull
81 print('is sq1 bounded?', sq1
.isbounded()) #bounded should return True
82 print('is sq5 bounded?', sq5
.isbounded()) #unbounded should return False
85 print('sample Polyhedron from sq6:', sq6
.sample())
87 print('sq7 with out constraints involving y and a', sq7
.project([a
, z
, x
, y
]))
89 print('the verticies for s are:', p
.vertices())
92 # plotting the intersection of two squares
93 square1
= Le(0, x
) & Le(x
, 2) & Le(0, y
) & Le(y
, 2)
94 square2
= Le(1, x
) & Le(x
, 3) & Le(1, y
) & Le(y
, 3)
97 plot
= fig
.add_subplot(1, 1, 1, aspect
='equal')
98 square1
.plot(plot
, facecolor
='red', alpha
=0.3)
99 square2
.plot(plot
, facecolor
='blue', alpha
=0.3)
101 squares
= Polyhedron(square1
+ square2
)
102 squares
.plot(plot
, facecolor
='blue', alpha
=0.3)