Back to distutils, add upload command
[linpy.git] / linpy / polyhedra.py
1 # Copyright 2014 MINES ParisTech
2 #
3 # This file is part of LinPy.
4 #
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
9 #
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
17
18 import functools
19 import math
20 import numbers
21
22 from . import islhelper
23
24 from .islhelper import mainctx, libisl
25 from .geometry import GeometricObject, Point
26 from .linexprs import LinExpr, Rational
27 from .domains import Domain
28
29
30 __all__ = [
31 'Polyhedron',
32 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
33 'Empty', 'Universe',
34 ]
35
36
37 class Polyhedron(Domain):
38 """
39 A convex polyhedron (or simply "polyhedron") is the space defined by a
40 system of linear equalities and inequalities. This space can be unbounded. A
41 Z-polyhedron (simply called "polyhedron" in LinPy) is the set of integer
42 points in a convex polyhedron.
43 """
44
45 __slots__ = (
46 '_equalities',
47 '_inequalities',
48 '_symbols',
49 '_dimension',
50 )
51
52 def __new__(cls, equalities=None, inequalities=None):
53 """
54 Return a polyhedron from two sequences of linear expressions: equalities
55 is a list of expressions equal to 0, and inequalities is a list of
56 expressions greater or equal to 0. For example, the polyhedron
57 0 <= x <= 2, 0 <= y <= 2 can be constructed with:
58
59 >>> x, y = symbols('x y')
60 >>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y])
61 >>> square1
62 And(0 <= x, x <= 2, 0 <= y, y <= 2)
63
64 It may be easier to use comparison operators LinExpr.__lt__(),
65 LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(),
66 Le(), Eq(), Ge() and Gt(), using one of the following instructions:
67
68 >>> x, y = symbols('x y')
69 >>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
70 >>> square1 = Le(0, x, 2) & Le(0, y, 2)
71
72 It is also possible to build a polyhedron from a string.
73
74 >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
75
76 Finally, a polyhedron can be constructed from a GeometricObject
77 instance, calling the GeometricObject.aspolyedron() method. This way, it
78 is possible to compute the polyhedral hull of a Domain instance, i.e.,
79 the convex hull of two polyhedra:
80
81 >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
82 >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')
83 >>> Polyhedron(square1 | square2)
84 And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3)
85 """
86 if isinstance(equalities, str):
87 if inequalities is not None:
88 raise TypeError('too many arguments')
89 return cls.fromstring(equalities)
90 elif isinstance(equalities, GeometricObject):
91 if inequalities is not None:
92 raise TypeError('too many arguments')
93 return equalities.aspolyhedron()
94 sc_equalities = []
95 if equalities is not None:
96 for equality in equalities:
97 if not isinstance(equality, LinExpr):
98 raise TypeError('equalities must be linear expressions')
99 sc_equalities.append(equality.scaleint())
100 sc_inequalities = []
101 if inequalities is not None:
102 for inequality in inequalities:
103 if not isinstance(inequality, LinExpr):
104 raise TypeError('inequalities must be linear expressions')
105 sc_inequalities.append(inequality.scaleint())
106 symbols = cls._xsymbols(sc_equalities + sc_inequalities)
107 islbset = cls._toislbasicset(sc_equalities, sc_inequalities, symbols)
108 return cls._fromislbasicset(islbset, symbols)
109
110 @property
111 def equalities(self):
112 """
113 The tuple of equalities. This is a list of LinExpr instances that are
114 equal to 0 in the polyhedron.
115 """
116 return self._equalities
117
118 @property
119 def inequalities(self):
120 """
121 The tuple of inequalities. This is a list of LinExpr instances that are
122 greater or equal to 0 in the polyhedron.
123 """
124 return self._inequalities
125
126 @property
127 def constraints(self):
128 """
129 The tuple of constraints, i.e., equalities and inequalities. This is
130 semantically equivalent to: equalities + inequalities.
131 """
132 return self._equalities + self._inequalities
133
134 @property
135 def polyhedra(self):
136 return self,
137
138 def make_disjoint(self):
139 return self
140
141 def isuniverse(self):
142 islbset = self._toislbasicset(self.equalities, self.inequalities,
143 self.symbols)
144 universe = bool(libisl.isl_basic_set_is_universe(islbset))
145 libisl.isl_basic_set_free(islbset)
146 return universe
147
148 def aspolyhedron(self):
149 return self
150
151 def convex_union(self, *others):
152 """
153 Return the convex union of two or more polyhedra.
154 """
155 for other in others:
156 if not isinstance(other, Polyhedron):
157 raise TypeError('arguments must be Polyhedron instances')
158 return Polyhedron(self.union(*others))
159
160 def __contains__(self, point):
161 if not isinstance(point, Point):
162 raise TypeError('point must be a Point instance')
163 if self.symbols != point.symbols:
164 raise ValueError('arguments must belong to the same space')
165 for equality in self.equalities:
166 if equality.subs(point.coordinates()) != 0:
167 return False
168 for inequality in self.inequalities:
169 if inequality.subs(point.coordinates()) < 0:
170 return False
171 return True
172
173 def subs(self, symbol, expression=None):
174 equalities = [equality.subs(symbol, expression)
175 for equality in self.equalities]
176 inequalities = [inequality.subs(symbol, expression)
177 for inequality in self.inequalities]
178 return Polyhedron(equalities, inequalities)
179
180 def asinequalities(self):
181 """
182 Express the polyhedron using inequalities, given as a list of
183 expressions greater or equal to 0.
184 """
185 inequalities = list(self.equalities)
186 inequalities.extend([-expression for expression in self.equalities])
187 inequalities.extend(self.inequalities)
188 return inequalities
189
190 def widen(self, other):
191 """
192 Compute the standard widening of two polyhedra, à la Halbwachs.
193
194 In its current implementation, this method is slow and should not be
195 used on large polyhedra.
196 """
197 if not isinstance(other, Polyhedron):
198 raise TypeError('argument must be a Polyhedron instance')
199 inequalities1 = self.asinequalities()
200 inequalities2 = other.asinequalities()
201 inequalities = []
202 for inequality1 in inequalities1:
203 if other <= Polyhedron(inequalities=[inequality1]):
204 inequalities.append(inequality1)
205 for inequality2 in inequalities2:
206 for i in range(len(inequalities1)):
207 inequalities3 = inequalities1[:i] + inequalities[i + 1:]
208 inequalities3.append(inequality2)
209 polyhedron3 = Polyhedron(inequalities=inequalities3)
210 if self == polyhedron3:
211 inequalities.append(inequality2)
212 break
213 return Polyhedron(inequalities=inequalities)
214
215 @classmethod
216 def _fromislbasicset(cls, islbset, symbols):
217 islconstraints = islhelper.isl_basic_set_constraints(islbset)
218 equalities = []
219 inequalities = []
220 for islconstraint in islconstraints:
221 constant = libisl.isl_constraint_get_constant_val(islconstraint)
222 constant = islhelper.isl_val_to_int(constant)
223 coefficients = {}
224 for index, symbol in enumerate(symbols):
225 coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint,
226 libisl.isl_dim_set, index)
227 coefficient = islhelper.isl_val_to_int(coefficient)
228 if coefficient != 0:
229 coefficients[symbol] = coefficient
230 expression = LinExpr(coefficients, constant)
231 if libisl.isl_constraint_is_equality(islconstraint):
232 equalities.append(expression)
233 else:
234 inequalities.append(expression)
235 libisl.isl_basic_set_free(islbset)
236 self = object().__new__(Polyhedron)
237 self._equalities = tuple(equalities)
238 self._inequalities = tuple(inequalities)
239 self._symbols = cls._xsymbols(self.constraints)
240 self._dimension = len(self._symbols)
241 return self
242
243 @classmethod
244 def _toislbasicset(cls, equalities, inequalities, symbols):
245 dimension = len(symbols)
246 indices = {symbol: index for index, symbol in enumerate(symbols)}
247 islsp = libisl.isl_space_set_alloc(mainctx, 0, dimension)
248 islbset = libisl.isl_basic_set_universe(libisl.isl_space_copy(islsp))
249 islls = libisl.isl_local_space_from_space(islsp)
250 for equality in equalities:
251 isleq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(islls))
252 for symbol, coefficient in equality.coefficients():
253 islval = str(coefficient).encode()
254 islval = libisl.isl_val_read_from_str(mainctx, islval)
255 index = indices[symbol]
256 isleq = libisl.isl_constraint_set_coefficient_val(isleq,
257 libisl.isl_dim_set, index, islval)
258 if equality.constant != 0:
259 islval = str(equality.constant).encode()
260 islval = libisl.isl_val_read_from_str(mainctx, islval)
261 isleq = libisl.isl_constraint_set_constant_val(isleq, islval)
262 islbset = libisl.isl_basic_set_add_constraint(islbset, isleq)
263 for inequality in inequalities:
264 islin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(islls))
265 for symbol, coefficient in inequality.coefficients():
266 islval = str(coefficient).encode()
267 islval = libisl.isl_val_read_from_str(mainctx, islval)
268 index = indices[symbol]
269 islin = libisl.isl_constraint_set_coefficient_val(islin,
270 libisl.isl_dim_set, index, islval)
271 if inequality.constant != 0:
272 islval = str(inequality.constant).encode()
273 islval = libisl.isl_val_read_from_str(mainctx, islval)
274 islin = libisl.isl_constraint_set_constant_val(islin, islval)
275 islbset = libisl.isl_basic_set_add_constraint(islbset, islin)
276 return islbset
277
278 @classmethod
279 def fromstring(cls, string):
280 domain = Domain.fromstring(string)
281 if not isinstance(domain, Polyhedron):
282 raise ValueError('non-polyhedral expression: {!r}'.format(string))
283 return domain
284
285 def __repr__(self):
286 strings = []
287 for equality in self.equalities:
288 left, right, swap = 0, 0, False
289 for i, (symbol, coefficient) in enumerate(equality.coefficients()):
290 if coefficient > 0:
291 left += coefficient * symbol
292 else:
293 right -= coefficient * symbol
294 if i == 0:
295 swap = True
296 if equality.constant > 0:
297 left += equality.constant
298 else:
299 right -= equality.constant
300 if swap:
301 left, right = right, left
302 strings.append('{} == {}'.format(left, right))
303 for inequality in self.inequalities:
304 left, right = 0, 0
305 for symbol, coefficient in inequality.coefficients():
306 if coefficient < 0:
307 left -= coefficient * symbol
308 else:
309 right += coefficient * symbol
310 if inequality.constant < 0:
311 left -= inequality.constant
312 else:
313 right += inequality.constant
314 strings.append('{} <= {}'.format(left, right))
315 if len(strings) == 1:
316 return strings[0]
317 else:
318 return 'And({})'.format(', '.join(strings))
319
320 @classmethod
321 def fromsympy(cls, expression):
322 domain = Domain.fromsympy(expression)
323 if not isinstance(domain, Polyhedron):
324 raise ValueError('non-polyhedral expression: {!r}'.format(expression))
325 return domain
326
327 def tosympy(self):
328 import sympy
329 constraints = []
330 for equality in self.equalities:
331 constraints.append(sympy.Eq(equality.tosympy(), 0))
332 for inequality in self.inequalities:
333 constraints.append(sympy.Ge(inequality.tosympy(), 0))
334 return sympy.And(*constraints)
335
336
337 class EmptyType(Polyhedron):
338 """
339 The empty polyhedron, whose set of constraints is not satisfiable.
340 """
341
342 def __new__(cls):
343 self = object().__new__(cls)
344 self._equalities = (Rational(1),)
345 self._inequalities = ()
346 self._symbols = ()
347 self._dimension = 0
348 return self
349
350 def widen(self, other):
351 if not isinstance(other, Polyhedron):
352 raise ValueError('argument must be a Polyhedron instance')
353 return other
354
355 def __repr__(self):
356 return 'Empty'
357
358 Empty = EmptyType()
359
360
361 class UniverseType(Polyhedron):
362 """
363 The universe polyhedron, whose set of constraints is always satisfiable,
364 i.e. is empty.
365 """
366
367 def __new__(cls):
368 self = object().__new__(cls)
369 self._equalities = ()
370 self._inequalities = ()
371 self._symbols = ()
372 self._dimension = ()
373 return self
374
375 def __repr__(self):
376 return 'Universe'
377
378 Universe = UniverseType()
379
380
381 def _pseudoconstructor(func):
382 @functools.wraps(func)
383 def wrapper(expression1, expression2, *expressions):
384 expressions = (expression1, expression2) + expressions
385 for expression in expressions:
386 if not isinstance(expression, LinExpr):
387 if isinstance(expression, numbers.Rational):
388 expression = Rational(expression)
389 else:
390 raise TypeError('arguments must be rational numbers '
391 'or linear expressions')
392 return func(*expressions)
393 return wrapper
394
395 @_pseudoconstructor
396 def Lt(*expressions):
397 """
398 Create the polyhedron with constraints expr1 < expr2 < expr3 ...
399 """
400 inequalities = []
401 for left, right in zip(expressions, expressions[1:]):
402 inequalities.append(right - left - 1)
403 return Polyhedron([], inequalities)
404
405 @_pseudoconstructor
406 def Le(*expressions):
407 """
408 Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
409 """
410 inequalities = []
411 for left, right in zip(expressions, expressions[1:]):
412 inequalities.append(right - left)
413 return Polyhedron([], inequalities)
414
415 @_pseudoconstructor
416 def Eq(*expressions):
417 """
418 Create the polyhedron with constraints expr1 == expr2 == expr3 ...
419 """
420 equalities = []
421 for left, right in zip(expressions, expressions[1:]):
422 equalities.append(left - right)
423 return Polyhedron(equalities, [])
424
425 @_pseudoconstructor
426 def Ne(*expressions):
427 """
428 Create the domain such that expr1 != expr2 != expr3 ... The result is a
429 Domain object, not a Polyhedron.
430 """
431 domain = Universe
432 for left, right in zip(expressions, expressions[1:]):
433 domain &= ~Eq(left, right)
434 return domain
435
436 @_pseudoconstructor
437 def Ge(*expressions):
438 """
439 Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
440 """
441 inequalities = []
442 for left, right in zip(expressions, expressions[1:]):
443 inequalities.append(left - right)
444 return Polyhedron([], inequalities)
445
446 @_pseudoconstructor
447 def Gt(*expressions):
448 """
449 Create the polyhedron with constraints expr1 > expr2 > expr3 ...
450 """
451 inequalities = []
452 for left, right in zip(expressions, expressions[1:]):
453 inequalities.append(left - right - 1)
454 return Polyhedron([], inequalities)