d1816461f31d2f8a5cd88f8e13c4c77f836760a0
4 from . import islhelper
6 from .islhelper
import mainctx
, libisl
7 from .linexprs
import Expression
, Constant
8 from .domains
import Domain
13 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
18 class Polyhedron(Domain
):
28 def __new__(cls
, equalities
=None, inequalities
=None):
29 if isinstance(equalities
, str):
30 if inequalities
is not None:
31 raise TypeError('too many arguments')
32 return cls
.fromstring(equalities
)
33 elif isinstance(equalities
, Polyhedron
):
34 if inequalities
is not None:
35 raise TypeError('too many arguments')
37 elif isinstance(equalities
, Domain
):
38 if inequalities
is not None:
39 raise TypeError('too many arguments')
40 return equalities
.polyhedral_hull()
41 if equalities
is None:
44 for i
, equality
in enumerate(equalities
):
45 if not isinstance(equality
, Expression
):
46 raise TypeError('equalities must be linear expressions')
47 equalities
[i
] = equality
._toint
()
48 if inequalities
is None:
51 for i
, inequality
in enumerate(inequalities
):
52 if not isinstance(inequality
, Expression
):
53 raise TypeError('inequalities must be linear expressions')
54 inequalities
[i
] = inequality
._toint
()
55 symbols
= cls
._xsymbols
(equalities
+ inequalities
)
56 islbset
= cls
._toislbasicset
(equalities
, inequalities
, symbols
)
57 return cls
._fromislbasicset
(islbset
, symbols
)
61 return self
._equalities
64 def inequalities(self
):
65 return self
._inequalities
68 def constraints(self
):
69 return self
._constraints
79 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
81 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
82 libisl
.isl_basic_set_free(islbset
)
85 def polyhedral_hull(self
):
89 def _fromislbasicset(cls
, islbset
, symbols
):
90 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
93 for islconstraint
in islconstraints
:
94 islpr
= libisl
.isl_printer_to_str(mainctx
)
95 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
96 constant
= islhelper
.isl_val_to_int(constant
)
98 for dim
, symbol
in enumerate(symbols
):
99 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
, libisl
.isl_dim_set
, dim
)
100 coefficient
= islhelper
.isl_val_to_int(coefficient
)
102 coefficients
[symbol
] = coefficient
103 expression
= Expression(coefficients
, constant
)
104 if libisl
.isl_constraint_is_equality(islconstraint
):
105 equalities
.append(expression
)
107 inequalities
.append(expression
)
108 libisl
.isl_basic_set_free(islbset
)
109 self
= object().__new
__(Polyhedron
)
110 self
._equalities
= tuple(equalities
)
111 self
._inequalities
= tuple(inequalities
)
112 self
._constraints
= tuple(equalities
+ inequalities
)
113 self
._symbols
= cls
._xsymbols
(self
._constraints
)
114 self
._dimension
= len(self
._symbols
)
118 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
119 dimension
= len(symbols
)
120 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
121 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
122 islls
= libisl
.isl_local_space_from_space(islsp
)
123 for equality
in equalities
:
124 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
125 for symbol
, coefficient
in equality
.coefficients():
126 val
= str(coefficient
).encode()
127 val
= libisl
.isl_val_read_from_str(mainctx
, val
)
128 sid
= symbols
.index(symbol
)
129 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
130 libisl
.isl_dim_set
, sid
, val
)
131 if equality
.constant
!= 0:
132 val
= str(equality
.constant
).encode()
133 val
= libisl
.isl_val_read_from_str(mainctx
, val
)
134 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, val
)
135 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
136 for inequality
in inequalities
:
137 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
138 for symbol
, coefficient
in inequality
.coefficients():
139 val
= str(coefficient
).encode()
140 val
= libisl
.isl_val_read_from_str(mainctx
, val
)
141 sid
= symbols
.index(symbol
)
142 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
143 libisl
.isl_dim_set
, sid
, val
)
144 if inequality
.constant
!= 0:
145 val
= str(inequality
.constant
).encode()
146 val
= libisl
.isl_val_read_from_str(mainctx
, val
)
147 islin
= libisl
.isl_constraint_set_constant_val(islin
, val
)
148 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
152 def fromstring(cls
, string
):
153 domain
= Domain
.fromstring(string
)
154 if not isinstance(domain
, Polyhedron
):
155 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
161 elif self
.isuniverse():
165 for equality
in self
.equalities
:
166 strings
.append('Eq({}, 0)'.format(equality
))
167 for inequality
in self
.inequalities
:
168 strings
.append('Ge({}, 0)'.format(inequality
))
169 if len(strings
) == 1:
172 return 'And({})'.format(', '.join(strings
))
175 def _fromsympy(cls
, expr
):
179 if expr
.func
== sympy
.And
:
180 for arg
in expr
.args
:
181 arg_eqs
, arg_ins
= cls
._fromsympy
(arg
)
182 equalities
.extend(arg_eqs
)
183 inequalities
.extend(arg_ins
)
184 elif expr
.func
== sympy
.Eq
:
185 expr
= Expression
.fromsympy(expr
.args
[0] - expr
.args
[1])
186 equalities
.append(expr
)
188 if expr
.func
== sympy
.Lt
:
189 expr
= Expression
.fromsympy(expr
.args
[1] - expr
.args
[0] - 1)
190 elif expr
.func
== sympy
.Le
:
191 expr
= Expression
.fromsympy(expr
.args
[1] - expr
.args
[0])
192 elif expr
.func
== sympy
.Ge
:
193 expr
= Expression
.fromsympy(expr
.args
[0] - expr
.args
[1])
194 elif expr
.func
== sympy
.Gt
:
195 expr
= Expression
.fromsympy(expr
.args
[0] - expr
.args
[1] - 1)
197 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
198 inequalities
.append(expr
)
199 return equalities
, inequalities
202 def fromsympy(cls
, expr
):
204 equalities
, inequalities
= cls
._fromsympy
(expr
)
205 return cls(equalities
, inequalities
)
210 for equality
in self
.equalities
:
211 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
212 for inequality
in self
.inequalities
:
213 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
214 return sympy
.And(*constraints
)
217 def _polymorphic(func
):
218 @functools.wraps(func
)
219 def wrapper(left
, right
):
220 if isinstance(left
, numbers
.Rational
):
221 left
= Constant(left
)
222 elif not isinstance(left
, Expression
):
223 raise TypeError('left must be a a rational number '
224 'or a linear expression')
225 if isinstance(right
, numbers
.Rational
):
226 right
= Constant(right
)
227 elif not isinstance(right
, Expression
):
228 raise TypeError('right must be a a rational number '
229 'or a linear expression')
230 return func(left
, right
)
235 return Polyhedron([], [right
- left
- 1])
239 return Polyhedron([], [right
- left
])
243 return Polyhedron([left
- right
], [])
247 return ~
Eq(left
, right
)
251 return Polyhedron([], [left
- right
- 1])
255 return Polyhedron([], [left
- right
])
260 Universe
= Polyhedron([])