e4ed1ccde8eff30ffbecd9c5415ab74c6a494f02
1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
23 from collections
import OrderedDict
, defaultdict
, Mapping
24 from fractions
import Fraction
, gcd
29 'Symbol', 'Dummy', 'symbols',
34 def _polymorphic(func
):
35 @functools.wraps(func
)
36 def wrapper(left
, right
):
37 if isinstance(right
, LinExpr
):
38 return func(left
, right
)
39 elif isinstance(right
, numbers
.Rational
):
40 right
= Rational(right
)
41 return func(left
, right
)
48 A linear expression consists of a list of coefficient-variable pairs
49 that capture the linear terms, plus a constant term. Linear expressions
50 are used to build constraints. They are temporary objects that typically
53 Linear expressions are generally built using overloaded operators. For
54 example, if x is a Symbol, then x + 1 is an instance of LinExpr.
56 LinExpr instances are hashable, and should be treated as immutable.
59 def __new__(cls
, coefficients
=None, constant
=0):
61 Return a linear expression from a dictionary or a sequence, that maps
62 symbols to their coefficients, and a constant term. The coefficients and
63 the constant term must be rational numbers.
65 For example, the linear expression x + 2y + 1 can be constructed using
66 one of the following instructions:
68 >>> x, y = symbols('x y')
69 >>> LinExpr({x: 1, y: 2}, 1)
70 >>> LinExpr([(x, 1), (y, 2)], 1)
72 However, it may be easier to use overloaded operators:
74 >>> x, y = symbols('x y')
77 Alternatively, linear expressions can be constructed from a string:
79 >>> LinExpr('x + 2*y + 1')
81 A linear expression with a single symbol of coefficient 1 and no
82 constant term is automatically subclassed as a Symbol instance. A linear
83 expression with no symbol, only a constant term, is automatically
84 subclassed as a Rational instance.
86 if isinstance(coefficients
, str):
88 raise TypeError('too many arguments')
89 return LinExpr
.fromstring(coefficients
)
90 if coefficients
is None:
91 return Rational(constant
)
92 if isinstance(coefficients
, Mapping
):
93 coefficients
= coefficients
.items()
94 coefficients
= list(coefficients
)
95 for symbol
, coefficient
in coefficients
:
96 if not isinstance(symbol
, Symbol
):
97 raise TypeError('symbols must be Symbol instances')
98 if not isinstance(coefficient
, numbers
.Rational
):
99 raise TypeError('coefficients must be rational numbers')
100 if not isinstance(constant
, numbers
.Rational
):
101 raise TypeError('constant must be a rational number')
102 if len(coefficients
) == 0:
103 return Rational(constant
)
104 if len(coefficients
) == 1 and constant
== 0:
105 symbol
, coefficient
= coefficients
[0]
108 coefficients
= [(symbol
, Fraction(coefficient
))
109 for symbol
, coefficient
in coefficients
if coefficient
!= 0]
110 coefficients
.sort(key
=lambda item
: item
[0].sortkey())
111 self
= object().__new
__(cls
)
112 self
._coefficients
= OrderedDict(coefficients
)
113 self
._constant
= Fraction(constant
)
114 self
._symbols
= tuple(self
._coefficients
)
115 self
._dimension
= len(self
._symbols
)
118 def coefficient(self
, symbol
):
120 Return the coefficient value of the given symbol, or 0 if the symbol
121 does not appear in the expression.
123 if not isinstance(symbol
, Symbol
):
124 raise TypeError('symbol must be a Symbol instance')
125 return self
._coefficients
.get(symbol
, Fraction(0))
127 __getitem__
= coefficient
129 def coefficients(self
):
131 Iterate over the pairs (symbol, value) of linear terms in the
132 expression. The constant term is ignored.
134 yield from self
._coefficients
.items()
139 The constant term of the expression.
141 return self
._constant
146 The tuple of symbols present in the expression, sorted according to
154 The dimension of the expression, i.e. the number of symbols present in
157 return self
._dimension
160 return hash((tuple(self
._coefficients
.items()), self
._constant
))
162 def isconstant(self
):
164 Return True if the expression only consists of a constant term. In this
165 case, it is a Rational instance.
171 Return True if an expression only consists of a symbol with coefficient
172 1. In this case, it is a Symbol instance.
178 Iterate over the coefficient values in the expression, and the constant
181 yield from self
._coefficients
.values()
194 def __add__(self
, other
):
196 Return the sum of two linear expressions.
198 coefficients
= defaultdict(Fraction
, self
._coefficients
)
199 for symbol
, coefficient
in other
._coefficients
.items():
200 coefficients
[symbol
] += coefficient
201 constant
= self
._constant
+ other
._constant
202 return LinExpr(coefficients
, constant
)
207 def __sub__(self
, other
):
209 Return the difference between two linear expressions.
211 coefficients
= defaultdict(Fraction
, self
._coefficients
)
212 for symbol
, coefficient
in other
._coefficients
.items():
213 coefficients
[symbol
] -= coefficient
214 constant
= self
._constant
- other
._constant
215 return LinExpr(coefficients
, constant
)
218 def __rsub__(self
, other
):
221 def __mul__(self
, other
):
223 Return the product of the linear expression by a rational.
225 if isinstance(other
, numbers
.Rational
):
226 coefficients
= ((symbol
, coefficient
* other
)
227 for symbol
, coefficient
in self
._coefficients
.items())
228 constant
= self
._constant
* other
229 return LinExpr(coefficients
, constant
)
230 return NotImplemented
234 def __truediv__(self
, other
):
236 Return the quotient of the linear expression by a rational.
238 if isinstance(other
, numbers
.Rational
):
239 coefficients
= ((symbol
, coefficient
/ other
)
240 for symbol
, coefficient
in self
._coefficients
.items())
241 constant
= self
._constant
/ other
242 return LinExpr(coefficients
, constant
)
243 return NotImplemented
246 def __eq__(self
, other
):
248 Test whether two linear expressions are equal.
250 if isinstance(other
, LinExpr
):
251 return self
._coefficients
== other
._coefficients
and \
252 self
._constant
== other
._constant
253 return NotImplemented
255 def __le__(self
, other
):
256 from .polyhedra
import Le
257 return Le(self
, other
)
259 def __lt__(self
, other
):
260 from .polyhedra
import Lt
261 return Lt(self
, other
)
263 def __ge__(self
, other
):
264 from .polyhedra
import Ge
265 return Ge(self
, other
)
267 def __gt__(self
, other
):
268 from .polyhedra
import Gt
269 return Gt(self
, other
)
273 Return the expression multiplied by its lowest common denominator to
274 make all values integer.
276 lcm
= functools
.reduce(lambda a
, b
: a
*b
// gcd(a
, b
),
277 [value
.denominator
for value
in self
.values()])
280 def subs(self
, symbol
, expression
=None):
282 Substitute the given symbol by an expression and return the resulting
283 expression. Raise TypeError if the resulting expression is not linear.
285 >>> x, y = symbols('x y')
290 To perform multiple substitutions at once, pass a sequence or a
291 dictionary of (old, new) pairs to subs.
293 >>> e.subs({x: y, y: x})
296 if expression
is None:
297 if isinstance(symbol
, Mapping
):
298 symbol
= symbol
.items()
299 substitutions
= symbol
301 substitutions
= [(symbol
, expression
)]
303 for symbol
, expression
in substitutions
:
304 if not isinstance(symbol
, Symbol
):
305 raise TypeError('symbols must be Symbol instances')
306 coefficients
= [(othersymbol
, coefficient
)
307 for othersymbol
, coefficient
in result
._coefficients
.items()
308 if othersymbol
!= symbol
]
309 coefficient
= result
._coefficients
.get(symbol
, 0)
310 constant
= result
._constant
311 result
= LinExpr(coefficients
, constant
) + coefficient
*expression
315 def _fromast(cls
, node
):
316 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
317 return cls
._fromast
(node
.body
[0])
318 elif isinstance(node
, ast
.Expr
):
319 return cls
._fromast
(node
.value
)
320 elif isinstance(node
, ast
.Name
):
321 return Symbol(node
.id)
322 elif isinstance(node
, ast
.Num
):
323 return Rational(node
.n
)
324 elif isinstance(node
, ast
.UnaryOp
) and isinstance(node
.op
, ast
.USub
):
325 return -cls
._fromast
(node
.operand
)
326 elif isinstance(node
, ast
.BinOp
):
327 left
= cls
._fromast
(node
.left
)
328 right
= cls
._fromast
(node
.right
)
329 if isinstance(node
.op
, ast
.Add
):
331 elif isinstance(node
.op
, ast
.Sub
):
333 elif isinstance(node
.op
, ast
.Mult
):
335 elif isinstance(node
.op
, ast
.Div
):
337 raise SyntaxError('invalid syntax')
339 _RE_NUM_VAR
= re
.compile(r
'(\d+|\))\s*([^\W\d_]\w*|\()')
342 def fromstring(cls
, string
):
344 Create an expression from a string. Raise SyntaxError if the string is
345 not properly formatted.
347 # add implicit multiplication operators, e.g. '5x' -> '5*x'
348 string
= LinExpr
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
349 tree
= ast
.parse(string
, 'eval')
350 expr
= cls
._fromast
(tree
)
351 if not isinstance(expr
, cls
):
352 raise SyntaxError('invalid syntax')
357 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
361 elif coefficient
== -1:
362 string
+= '-' if i
== 0 else ' - '
364 string
+= '{}*'.format(coefficient
)
365 elif coefficient
> 0:
366 string
+= ' + {}*'.format(coefficient
)
368 string
+= ' - {}*'.format(-coefficient
)
369 string
+= '{}'.format(symbol
)
370 constant
= self
.constant
372 string
+= '{}'.format(constant
)
374 string
+= ' + {}'.format(constant
)
376 string
+= ' - {}'.format(-constant
)
379 def _repr_latex_(self
):
381 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
385 elif coefficient
== -1:
386 string
+= '-' if i
== 0 else ' - '
388 string
+= '{}'.format(coefficient
._repr
_latex
_().strip('$'))
389 elif coefficient
> 0:
390 string
+= ' + {}'.format(coefficient
._repr
_latex
_().strip('$'))
391 elif coefficient
< 0:
392 string
+= ' - {}'.format((-coefficient
)._repr
_latex
_().strip('$'))
393 string
+= '{}'.format(symbol
._repr
_latex
_().strip('$'))
394 constant
= self
.constant
396 string
+= '{}'.format(constant
._repr
_latex
_().strip('$'))
398 string
+= ' + {}'.format(constant
._repr
_latex
_().strip('$'))
400 string
+= ' - {}'.format((-constant
)._repr
_latex
_().strip('$'))
401 return '$${}$$'.format(string
)
403 def _parenstr(self
, always
=False):
405 if not always
and (self
.isconstant() or self
.issymbol()):
408 return '({})'.format(string
)
411 def fromsympy(cls
, expr
):
413 Create a linear expression from a sympy expression. Raise TypeError is
414 the sympy expression is not linear.
419 for symbol
, coefficient
in expr
.as_coefficients_dict().items():
420 coefficient
= Fraction(coefficient
.p
, coefficient
.q
)
421 if symbol
== sympy
.S
.One
:
422 constant
= coefficient
423 elif isinstance(symbol
, sympy
.Dummy
):
424 # we cannot properly convert dummy symbols
425 raise TypeError('cannot convert dummy symbols')
426 elif isinstance(symbol
, sympy
.Symbol
):
427 symbol
= Symbol(symbol
.name
)
428 coefficients
.append((symbol
, coefficient
))
430 raise TypeError('non-linear expression: {!r}'.format(expr
))
431 expr
= LinExpr(coefficients
, constant
)
432 if not isinstance(expr
, cls
):
433 raise TypeError('cannot convert to a {} instance'.format(cls
.__name
__))
438 Convert the linear expression to a sympy expression.
442 for symbol
, coefficient
in self
.coefficients():
443 term
= coefficient
* sympy
.Symbol(symbol
.name
)
445 expr
+= self
.constant
449 class Symbol(LinExpr
):
451 Symbols are the basic components to build expressions and constraints.
452 They correspond to mathematical variables. Symbols are instances of
453 class LinExpr and inherit its functionalities.
455 Two instances of Symbol are equal if they have the same name.
458 def __new__(cls
, name
):
460 Return a symbol with the name string given in argument.
462 if not isinstance(name
, str):
463 raise TypeError('name must be a string')
464 node
= ast
.parse(name
)
466 name
= node
.body
[0].value
.id
467 except (AttributeError, SyntaxError):
468 raise SyntaxError('invalid syntax')
469 self
= object().__new
__(cls
)
471 self
._coefficients
= {self
: Fraction(1)}
472 self
._constant
= Fraction(0)
473 self
._symbols
= (self
,)
480 The name of the symbol.
485 return hash(self
.sortkey())
489 Return a sorting key for the symbol. It is useful to sort a list of
490 symbols in a consistent order, as comparison functions are overridden
491 (see the documentation of class LinExpr).
493 >>> sort(symbols, key=Symbol.sortkey)
500 def __eq__(self
, other
):
501 if isinstance(other
, Symbol
):
502 return self
.sortkey() == other
.sortkey()
503 return NotImplemented
507 Return a new Dummy symbol instance with the same name.
509 return Dummy(self
.name
)
514 def _repr_latex_(self
):
515 return '$${}$$'.format(self
.name
)
520 This function returns a tuple of symbols whose names are taken from a comma
521 or whitespace delimited string, or a sequence of strings. It is useful to
522 define several symbols at once.
524 >>> x, y = symbols('x y')
525 >>> x, y = symbols('x, y')
526 >>> x, y = symbols(['x', 'y'])
528 if isinstance(names
, str):
529 names
= names
.replace(',', ' ').split()
530 return tuple(Symbol(name
) for name
in names
)
535 A variation of Symbol in which all symbols are unique and identified by
536 an internal count index. If a name is not supplied then a string value
537 of the count index will be used. This is useful when a unique, temporary
538 variable is needed and the name of the variable used in the expression
541 Unlike Symbol, Dummy instances with the same name are not equal:
544 >>> x1, x2 = Dummy('x'), Dummy('x')
555 def __new__(cls
, name
=None):
557 Return a fresh dummy symbol with the name string given in argument.
560 name
= 'Dummy_{}'.format(Dummy
._count
)
561 elif not isinstance(name
, str):
562 raise TypeError('name must be a string')
563 self
= object().__new
__(cls
)
564 self
._index
= Dummy
._count
565 self
._name
= name
.strip()
566 self
._coefficients
= {self
: Fraction(1)}
567 self
._constant
= Fraction(0)
568 self
._symbols
= (self
,)
574 return hash(self
.sortkey())
577 return self
._name
, self
._index
580 return '_{}'.format(self
.name
)
582 def _repr_latex_(self
):
583 return '$${}_{{{}}}$$'.format(self
.name
, self
._index
)
586 class Rational(LinExpr
, Fraction
):
588 A particular case of linear expressions are rational values, i.e. linear
589 expressions consisting only of a constant term, with no symbol. They are
590 implemented by the Rational class, that inherits from both LinExpr and
591 fractions.Fraction classes.
594 def __new__(cls
, numerator
=0, denominator
=None):
595 self
= object().__new
__(cls
)
596 self
._coefficients
= {}
597 self
._constant
= Fraction(numerator
, denominator
)
600 self
._numerator
= self
._constant
.numerator
601 self
._denominator
= self
._constant
.denominator
605 return Fraction
.__hash
__(self
)
611 def isconstant(self
):
615 return Fraction
.__bool
__(self
)
618 if self
.denominator
== 1:
619 return '{!r}'.format(self
.numerator
)
621 return '{!r}/{!r}'.format(self
.numerator
, self
.denominator
)
623 def _repr_latex_(self
):
624 if self
.denominator
== 1:
625 return '$${}$$'.format(self
.numerator
)
626 elif self
.numerator
< 0:
627 return '$$-\\frac{{{}}}{{{}}}$$'.format(-self
.numerator
,
630 return '$$\\frac{{{}}}{{{}}}$$'.format(self
.numerator
,