Fix C code
[linpy.git] / examples / squares.py
index 898f765..0f4e1a5 100755 (executable)
@@ -5,12 +5,14 @@ from pypol import *
 x, y = symbols('x y')
 
 sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
 x, y = symbols('x y')
 
 sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
-sq2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
+sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
 
 sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
 sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
 sq5 = Le(1, x) & Le(x, 2) & Le(1, y) 
 
 sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
 sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
 sq5 = Le(1, x) & Le(x, 2) & Le(1, y) 
+sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
 u = Polyhedron([])
 u = Polyhedron([])
+x = sq1 - sq2
 
 print('sq1 =', sq1) #print correct square
 print('sq2 =', sq2) #print correct square
 
 print('sq1 =', sq1) #print correct square
 print('sq2 =', sq2) #print correct square
@@ -21,16 +23,19 @@ print()
 print('¬sq1 =', ~sq1) #test compliment
 print()
 print('sq1 + sq1 =', sq1 + sq2) #test addition
 print('¬sq1 =', ~sq1) #test compliment
 print()
 print('sq1 + sq1 =', sq1 + sq2) #test addition
-print('sq1 + sq2 =', Polyhedron(sq1 + sq2))
-print('sq1 - sq1 =', u - u)
+print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
+print()
+print('u + u =', u + u)#test addition
+print('u - u =', u - u) #test subtraction
+print()
 print('sq2 - sq1 =', sq2 - sq1) #test subtraction
 print('sq2 - sq1 =', sq2 - sq1) #test subtraction
-print('sq2 - sq1 =', Polyhedron(sq2 - sq1))
-print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test polyhedreon 
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
 print()
 print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
 print('sq1 ∪ sq2 =', sq1 | sq2) #test union
 print()
 print()
 print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
 print('sq1 ∪ sq2 =', sq1 | sq2) #test union
 print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #test convex union
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
 print()
 print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
 print()
 print()
 print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
 print()
@@ -45,10 +50,16 @@ print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict s
 print()
 print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
 print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
 print()
 print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
 print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print()
 print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
 print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
 print()
 print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
 print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
 print()
-print('Polyhedral hull of sq1 is:', sq1.polyhedral_hull())
+print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same 
+                                                               #value as Polyhedron(sq1 + sq2)
 print()
 print()
-print('is sq1 bounded?', sq1.isbounded())
-print('is sq5 bounded?', sq5.isbounded())
+print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
+print()
+print('sq6:', sq6)
+print('sq6 simplified:', sq6.sample())
+