import functools
+import math
import numbers
from . import islhelper
from .islhelper import mainctx, libisl
-from .linexprs import Expression, Rational
+from .geometry import GeometricObject
+from .coordinates import Point
+from .linexprs import Expression, Symbol, Rational
from .domains import Domain
if inequalities is not None:
raise TypeError('too many arguments')
return cls.fromstring(equalities)
- elif isinstance(equalities, Polyhedron):
- if inequalities is not None:
- raise TypeError('too many arguments')
- return equalities
- elif isinstance(equalities, Domain):
+ elif isinstance(equalities, GeometricObject):
if inequalities is not None:
raise TypeError('too many arguments')
return equalities.aspolyhedron()
def aspolyhedron(self):
return self
+ def __contains__(self, point):
+ if not isinstance(point, Point):
+ raise TypeError('point must be a Point instance')
+ if self.symbols != point.symbols:
+ raise ValueError('arguments must belong to the same space')
+ for equality in self.equalities:
+ if equality.subs(point.coordinates()) != 0:
+ return False
+ for inequality in self.inequalities:
+ if inequality.subs(point.coordinates()) < 0:
+ return False
+ return True
+
def subs(self, symbol, expression=None):
equalities = [equality.subs(symbol, expression)
for equality in self.equalities]
constraints.append(sympy.Ge(inequality.tosympy(), 0))
return sympy.And(*constraints)
+ @classmethod
+ def _sort_polygon_2d(cls, points):
+ if len(points) <= 3:
+ return points
+ o = sum((Vector(point) for point in points)) / len(points)
+ o = Point(o.coordinates())
+ angles = {}
+ for m in points:
+ om = Vector(o, m)
+ dx, dy = (coordinate for symbol, coordinates in om.coordinates())
+ angle = math.atan2(dy, dx)
+ angles[m] = angle
+ return sorted(points, key=angles.get)
+
+ @classmethod
+ def _sort_polygon_3d(cls, points):
+ if len(points) <= 3:
+ return points
+ o = sum((Vector(point) for point in points)) / len(points)
+ o = Point(o.coordinates())
+ a, b = points[:2]
+ oa = Vector(o, a)
+ ob = Vector(o, b)
+ norm_oa = oa.norm()
+ u = (oa.cross(ob)).asunit()
+ angles = {a: 0.}
+ for m in points[1:]:
+ om = Vector(o, m)
+ normprod = norm_oa * om.norm()
+ cosinus = oa.dot(om) / normprod
+ sinus = u.dot(oa.cross(om)) / normprod
+ angle = math.acos(cosinus)
+ angle = math.copysign(angle, sinus)
+ angles[m] = angle
+ return sorted(points, key=angles.get)
+
+ def plot(self):
+ import matplotlib.pyplot as plt
+ from matplotlib.path import Path
+ import matplotlib.patches as patches
+
+ if len(self.symbols)> 3:
+ raise TypeError
+
+ elif len(self.symbols) == 2:
+ verts = self.vertices()
+ points = []
+ codes = [Path.MOVETO]
+ for vert in verts:
+ pairs = ()
+ for sym in sorted(vert, key=Symbol.sortkey):
+ num = vert.get(sym)
+ pairs = pairs + (num,)
+ points.append(pairs)
+ points.append((0.0, 0.0))
+ num = len(points)
+ while num > 2:
+ codes.append(Path.LINETO)
+ num = num - 1
+ else:
+ codes.append(Path.CLOSEPOLY)
+ path = Path(points, codes)
+ fig = plt.figure()
+ ax = fig.add_subplot(111)
+ patch = patches.PathPatch(path, facecolor='blue', lw=2)
+ ax.add_patch(patch)
+ ax.set_xlim(-5,5)
+ ax.set_ylim(-5,5)
+ plt.show()
+
+ elif len(self.symbols)==3:
+ return 0
+
+ return points
+
def _polymorphic(func):
@functools.wraps(func)