+import ast
import functools
+import re
from . import islhelper
from .islhelper import mainctx, libisl, isl_set_basic_sets
+from .linexprs import Expression, Symbol
__all__ = [
symbols = set()
for item in iterator:
symbols.update(item.symbols)
- return tuple(sorted(symbols))
+ return tuple(sorted(symbols, key=Symbol.sortkey))
@property
def polyhedra(self):
libisl.isl_set_free(islset)
return universe
+ def isbounded(self):
+ islset = self._toislset(self.polyhedra, self.symbols)
+ bounded = bool(libisl.isl_set_is_bounded(islset))
+ libisl.isl_set_free(islset)
+ return bounded
+
def __eq__(self, other):
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
return self.complement()
def simplify(self):
- # see isl_set_coalesce, isl_set_detect_equalities,
- # isl_set_remove_redundancies
- # which ones? in which order?
- raise NotImplementedError
+ #does not change anything in any of the examples
+ #isl seems to do this naturally
+ islset = self._toislset(self.polyhedra, self.symbols)
+ islset = libisl.isl_set_remove_redundancies(islset)
+ return self._fromislset(islset, self.symbols)
def polyhedral_hull(self):
# several types of hull are available
islbset = libisl.isl_set_polyhedral_hull(islset)
return Polyhedron._fromislbasicset(islbset, self.symbols)
- def project(self, symbols):
- # not sure what isl_set_project_out actually does…
- # use isl_set_drop_constraints_involving_dims instead?
- raise NotImplementedError
+ def project_out(self, dims):
+ # use to remove certain variables
+ islset = self._toislset(self.polyhedra, self.symbols)
+ n = 0
+ for index, symbol in reversed(list(enumerate(self.symbols))):
+ if symbol in dims:
+ n += 1
+ elif n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n)
+ n = 0
+ if n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
+ dims = [symbol for symbol in self.symbols if symbol not in dims]
+ return Domain._fromislset(islset, dims)
def sample(self):
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmax(islset)
return self._fromislset(islset, self.symbols)
+
+ def num_parameters(self):
+ #could be useful with large, complicated polyhedrons
+ islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
+ num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
+ return num
+
+ def involves_dims(self, dims):
+ #could be useful with large, complicated polyhedrons
+ islset = self._toislset(self.polyhedra, self.symbols)
+ dims = sorted(dims)
+ symbols = sorted(list(self.symbols))
+ n = 0
+ if len(dims)>0:
+ for dim in dims:
+ if dim in symbols:
+ first = symbols.index(dims[0])
+ n +=1
+ else:
+ first = 0
+ else:
+ return False
+ value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n))
+ libisl.isl_set_free(islset)
+ return value
@classmethod
def _fromislset(cls, islset, symbols):
islset1 = libisl.isl_set_union(islset1, islset2)
return islset1
+ @classmethod
+ def _fromast(cls, node):
+ from .polyhedra import Polyhedron
+ if isinstance(node, ast.Module) and len(node.body) == 1:
+ return cls._fromast(node.body[0])
+ elif isinstance(node, ast.Expr):
+ return cls._fromast(node.value)
+ elif isinstance(node, ast.UnaryOp):
+ domain = cls._fromast(node.operand)
+ if isinstance(node.operand, ast.invert):
+ return Not(domain)
+ elif isinstance(node, ast.BinOp):
+ domain1 = cls._fromast(node.left)
+ domain2 = cls._fromast(node.right)
+ if isinstance(node.op, ast.BitAnd):
+ return And(domain1, domain2)
+ elif isinstance(node.op, ast.BitOr):
+ return Or(domain1, domain2)
+ elif isinstance(node, ast.Compare):
+ equalities = []
+ inequalities = []
+ left = Expression._fromast(node.left)
+ for i in range(len(node.ops)):
+ op = node.ops[i]
+ right = Expression._fromast(node.comparators[i])
+ if isinstance(op, ast.Lt):
+ inequalities.append(right - left - 1)
+ elif isinstance(op, ast.LtE):
+ inequalities.append(right - left)
+ elif isinstance(op, ast.Eq):
+ equalities.append(left - right)
+ elif isinstance(op, ast.GtE):
+ inequalities.append(left - right)
+ elif isinstance(op, ast.Gt):
+ inequalities.append(left - right - 1)
+ else:
+ break
+ left = right
+ else:
+ return Polyhedron(equalities, inequalities)
+ raise SyntaxError('invalid syntax')
+
+ _RE_BRACES = re.compile(r'^\{\s*|\s*\}$')
+ _RE_EQ = re.compile(r'([^<=>])=([^<=>])')
+ _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩')
+ _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪')
+ _RE_NOT = re.compile(r'\bnot\b|!|¬')
+ _RE_NUM_VAR = Expression._RE_NUM_VAR
+ _RE_OPERATORS = re.compile(r'(&|\||~)')
+
@classmethod
def fromstring(cls, string):
- raise NotImplementedError
+ # remove curly brackets
+ string = cls._RE_BRACES.sub(r'', string)
+ # replace '=' by '=='
+ string = cls._RE_EQ.sub(r'\1==\2', string)
+ # replace 'and', 'or', 'not'
+ string = cls._RE_AND.sub(r' & ', string)
+ string = cls._RE_OR.sub(r' | ', string)
+ string = cls._RE_NOT.sub(r' ~', string)
+ # add implicit multiplication operators, e.g. '5x' -> '5*x'
+ string = cls._RE_NUM_VAR.sub(r'\1*\2', string)
+ # add parentheses to force precedence
+ tokens = cls._RE_OPERATORS.split(string)
+ for i, token in enumerate(tokens):
+ if i % 2 == 0:
+ token = '({})'.format(token)
+ tokens[i] = token
+ string = ''.join(tokens)
+ tree = ast.parse(string, 'eval')
+ return cls._fromast(tree)
def __repr__(self):
assert len(self.polyhedra) >= 2
@classmethod
def fromsympy(cls, expr):
- raise NotImplementedError
+ import sympy
+ from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
+ funcmap = {
+ sympy.And: And, sympy.Or: Or, sympy.Not: Not,
+ sympy.Lt: Lt, sympy.Le: Le,
+ sympy.Eq: Eq, sympy.Ne: Ne,
+ sympy.Ge: Ge, sympy.Gt: Gt,
+ }
+ if expr.func in funcmap:
+ args = [Domain.fromsympy(arg) for arg in expr.args]
+ return funcmap[expr.func](*args)
+ elif isinstance(expr, sympy.Expr):
+ return Expression.fromsympy(expr)
+ raise ValueError('non-domain expression: {!r}'.format(expr))
def tosympy(self):
- raise NotImplementedError
+ import sympy
+ polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
+ return sympy.Or(*polyhedra)
def And(*domains):