Fix methods Domain._sort_polygon_2d(), Domain._sort_polygon_3d()
[linpy.git] / pypol / polyhedra.py
index 6ef7cc1..69ed2b2 100644 (file)
@@ -1,10 +1,12 @@
 import functools
 import functools
+import math
 import numbers
 
 from . import islhelper
 
 from .islhelper import mainctx, libisl
 import numbers
 
 from . import islhelper
 
 from .islhelper import mainctx, libisl
-from .linexprs import Expression, Constant
+from .geometry import GeometricObject, Point, Vector
+from .linexprs import Expression, Symbol, Rational
 from .domains import Domain
 
 
 from .domains import Domain
 
 
@@ -30,14 +32,10 @@ class Polyhedron(Domain):
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return cls.fromstring(equalities)
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return cls.fromstring(equalities)
-        elif isinstance(equalities, Polyhedron):
+        elif isinstance(equalities, GeometricObject):
             if inequalities is not None:
                 raise TypeError('too many arguments')
             if inequalities is not None:
                 raise TypeError('too many arguments')
-            return equalities
-        elif isinstance(equalities, Domain):
-            if inequalities is not None:
-                raise TypeError('too many arguments')
-            return equalities.polyhedral_hull()
+            return equalities.aspolyhedron()
         if equalities is None:
             equalities = []
         else:
         if equalities is None:
             equalities = []
         else:
@@ -82,9 +80,29 @@ class Polyhedron(Domain):
         libisl.isl_basic_set_free(islbset)
         return universe
 
         libisl.isl_basic_set_free(islbset)
         return universe
 
-    def polyhedral_hull(self):
+    def aspolyhedron(self):
         return self
 
         return self
 
+    def __contains__(self, point):
+        if not isinstance(point, Point):
+            raise TypeError('point must be a Point instance')
+        if self.symbols != point.symbols:
+            raise ValueError('arguments must belong to the same space')
+        for equality in self.equalities:
+            if equality.subs(point.coordinates()) != 0:
+                return False
+        for inequality in self.inequalities:
+            if inequality.subs(point.coordinates()) < 0:
+                return False
+        return True
+
+    def subs(self, symbol, expression=None):
+        equalities = [equality.subs(symbol, expression)
+            for equality in self.equalities]
+        inequalities = [inequality.subs(symbol, expression)
+            for inequality in self.inequalities]
+        return Polyhedron(equalities, inequalities)
+
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
@@ -164,46 +182,20 @@ class Polyhedron(Domain):
         else:
             strings = []
             for equality in self.equalities:
         else:
             strings = []
             for equality in self.equalities:
-                strings.append('Eq({}, 0)'.format(equality))
+                strings.append('0 == {}'.format(equality))
             for inequality in self.inequalities:
             for inequality in self.inequalities:
-                strings.append('Ge({}, 0)'.format(inequality))
+                strings.append('0 <= {}'.format(inequality))
             if len(strings) == 1:
                 return strings[0]
             else:
                 return 'And({})'.format(', '.join(strings))
 
             if len(strings) == 1:
                 return strings[0]
             else:
                 return 'And({})'.format(', '.join(strings))
 
-    @classmethod
-    def _fromsympy(cls, expr):
-        import sympy
-        equalities = []
-        inequalities = []
-        if expr.func == sympy.And:
-            for arg in expr.args:
-                arg_eqs, arg_ins = cls._fromsympy(arg)
-                equalities.extend(arg_eqs)
-                inequalities.extend(arg_ins)
-        elif expr.func == sympy.Eq:
-            expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            equalities.append(expr)
-        else:
-            if expr.func == sympy.Lt:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0] - 1)
-            elif expr.func == sympy.Le:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0])
-            elif expr.func == sympy.Ge:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            elif expr.func == sympy.Gt:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1] - 1)
-            else:
-                raise ValueError('non-polyhedral expression: {!r}'.format(expr))
-            inequalities.append(expr)
-        return equalities, inequalities
-
     @classmethod
     def fromsympy(cls, expr):
     @classmethod
     def fromsympy(cls, expr):
-        import sympy
-        equalities, inequalities = cls._fromsympy(expr)
-        return cls(equalities, inequalities)
+        domain = Domain.fromsympy(expr)
+        if not isinstance(domain, Polyhedron):
+            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+        return domain
 
     def tosympy(self):
         import sympy
 
     def tosympy(self):
         import sympy
@@ -214,17 +206,118 @@ class Polyhedron(Domain):
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
+    @classmethod
+    def _polygon_inner_point(cls, points):
+        symbols = points[0].symbols
+        coordinates = {symbol: 0 for symbol in symbols}
+        for point in points:
+            for symbol, coordinate in point.coordinates():
+                coordinates[symbol] += coordinate
+        for symbol in symbols:
+            coordinates[symbol] /= len(points)
+        return Point(coordinates)
+
+    @classmethod
+    def _sort_polygon_2d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        angles = {}
+        for m in points:
+            om = Vector(o, m)
+            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
+            angle = math.atan2(dy, dx)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    @classmethod
+    def _sort_polygon_3d(cls, points):
+        if len(points) <= 3:
+            return points
+        o = cls._polygon_inner_point(points)
+        a = points[0]
+        oa = Vector(o, a)
+        norm_oa = oa.norm()
+        for b in points[1:]:
+            ob = Vector(o, b)
+            u = oa.cross(ob)
+            if not u.isnull():
+                u = u.asunit()
+                break
+        else:
+            raise ValueError('degenerate polygon')
+        angles = {a: 0.}
+        for m in points[1:]:
+            om = Vector(o, m)
+            normprod = norm_oa * om.norm()
+            cosinus = oa.dot(om) / normprod
+            sinus = u.dot(oa.cross(om)) / normprod
+            angle = math.acos(cosinus)
+            angle = math.copysign(angle, sinus)
+            angles[m] = angle
+        return sorted(points, key=angles.get)
+
+    def faces(self):
+        vertices = self.vertices()
+        faces = []
+        for constraint in self.constraints:
+            face = []
+            for vertex in vertices:
+                if constraint.subs(vertex.coordinates()) == 0:
+                    face.append(vertex)
+            faces.append(face)
+        return faces
+
+    def plot(self):
+        import matplotlib.pyplot as plt
+        from matplotlib.path import Path
+        import matplotlib.patches as patches
+
+        if len(self.symbols)> 3:
+            raise TypeError
+
+        elif len(self.symbols) == 2:
+            verts = self.vertices()
+            points = []
+            codes = [Path.MOVETO]
+            for vert in verts:
+                pairs = ()
+                for sym in sorted(vert, key=Symbol.sortkey):
+                    num = vert.get(sym)
+                    pairs = pairs + (num,)
+                points.append(pairs)
+            points.append((0.0, 0.0))
+            num = len(points)
+            while num > 2:
+                codes.append(Path.LINETO)
+                num = num - 1
+            else:
+                codes.append(Path.CLOSEPOLY)
+            path = Path(points, codes)
+            fig = plt.figure()
+            ax = fig.add_subplot(111)
+            patch = patches.PathPatch(path, facecolor='blue', lw=2)
+            ax.add_patch(patch)
+            ax.set_xlim(-5,5)
+            ax.set_ylim(-5,5)
+            plt.show()
+
+        elif len(self.symbols)==3:
+            return 0
+
+        return points
+
 
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
         if isinstance(left, numbers.Rational):
 
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
         if isinstance(left, numbers.Rational):
-            left = Constant(left)
+            left = Rational(left)
         elif not isinstance(left, Expression):
             raise TypeError('left must be a a rational number '
                 'or a linear expression')
         if isinstance(right, numbers.Rational):
         elif not isinstance(left, Expression):
             raise TypeError('left must be a a rational number '
                 'or a linear expression')
         if isinstance(right, numbers.Rational):
-            right = Constant(right)
+            right = Rational(right)
         elif not isinstance(right, Expression):
             raise TypeError('right must be a a rational number '
                 'or a linear expression')
         elif not isinstance(right, Expression):
             raise TypeError('right must be a a rational number '
                 'or a linear expression')