"""
if not isinstance(symbol, Symbol):
raise TypeError('symbol must be a Symbol instance')
- return Rational(self._coefficients.get(symbol, 0))
+ return self._coefficients.get(symbol, Fraction(0))
__getitem__ = coefficient
Iterate over the pairs (symbol, value) of linear terms in the
expression. The constant term is ignored.
"""
- for symbol, coefficient in self._coefficients.items():
- yield symbol, Rational(coefficient)
+ yield from self._coefficients.items()
@property
def constant(self):
"""
The constant term of the expression.
"""
- return Rational(self._constant)
+ return self._constant
@property
def symbols(self):
Iterate over the coefficient values in the expression, and the constant
term.
"""
- for coefficient in self._coefficients.values():
- yield Rational(coefficient)
- yield Rational(self._constant)
+ yield from self._coefficients.values()
+ yield self._constant
def __bool__(self):
return True
"""
Test whether two linear expressions are equal.
"""
- return isinstance(other, LinExpr) and \
- self._coefficients == other._coefficients and \
- self._constant == other._constant
+ if isinstance(other, LinExpr):
+ return self._coefficients == other._coefficients and \
+ self._constant == other._constant
+ return NotImplemented
def __le__(self, other):
from .polyhedra import Le
Return the expression multiplied by its lowest common denominator to
make all values integer.
"""
- lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
+ lcd = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
- return self * lcm
+ return self * lcd
def subs(self, symbol, expression=None):
"""
@classmethod
def fromsympy(cls, expr):
"""
- Create a linear expression from a sympy expression. Raise ValueError is
+ Create a linear expression from a sympy expression. Raise TypeError is
the sympy expression is not linear.
"""
import sympy
coefficient = Fraction(coefficient.p, coefficient.q)
if symbol == sympy.S.One:
constant = coefficient
+ elif isinstance(symbol, sympy.Dummy):
+ # we cannot properly convert dummy symbols
+ raise TypeError('cannot convert dummy symbols')
elif isinstance(symbol, sympy.Symbol):
symbol = Symbol(symbol.name)
coefficients.append((symbol, coefficient))
else:
- raise ValueError('non-linear expression: {!r}'.format(expr))
- return LinExpr(coefficients, constant)
+ raise TypeError('non-linear expression: {!r}'.format(expr))
+ expr = LinExpr(coefficients, constant)
+ if not isinstance(expr, cls):
+ raise TypeError('cannot convert to a {} instance'.format(cls.__name__))
+ return expr
def tosympy(self):
"""
return True
def __eq__(self, other):
- return self.sortkey() == other.sortkey()
+ if isinstance(other, Symbol):
+ return self.sortkey() == other.sortkey()
+ return NotImplemented
def asdummy(self):
"""
def _repr_latex_(self):
return '$${}$$'.format(self.name)
- @classmethod
- def fromsympy(cls, expr):
- import sympy
- if isinstance(expr, sympy.Dummy):
- return Dummy(expr.name)
- elif isinstance(expr, sympy.Symbol):
- return Symbol(expr.name)
- else:
- raise TypeError('expr must be a sympy.Symbol instance')
+
+def symbols(names):
+ """
+ This function returns a tuple of symbols whose names are taken from a comma
+ or whitespace delimited string, or a sequence of strings. It is useful to
+ define several symbols at once.
+
+ >>> x, y = symbols('x y')
+ >>> x, y = symbols('x, y')
+ >>> x, y = symbols(['x', 'y'])
+ """
+ if isinstance(names, str):
+ names = names.replace(',', ' ').split()
+ return tuple(Symbol(name) for name in names)
class Dummy(Symbol):
return '$${}_{{{}}}$$'.format(self.name, self._index)
-def symbols(names):
- """
- This function returns a tuple of symbols whose names are taken from a comma
- or whitespace delimited string, or a sequence of strings. It is useful to
- define several symbols at once.
-
- >>> x, y = symbols('x y')
- >>> x, y = symbols('x, y')
- >>> x, y = symbols(['x', 'y'])
- """
- if isinstance(names, str):
- names = names.replace(',', ' ').split()
- return tuple(Symbol(name) for name in names)
-
-
class Rational(LinExpr, Fraction):
"""
A particular case of linear expressions are rational values, i.e. linear
else:
return '$$\\frac{{{}}}{{{}}}$$'.format(self.numerator,
self.denominator)
-
- @classmethod
- def fromsympy(cls, expr):
- import sympy
- if isinstance(expr, sympy.Rational):
- return Rational(expr.p, expr.q)
- elif isinstance(expr, numbers.Rational):
- return Rational(expr)
- else:
- raise TypeError('expr must be a sympy.Rational instance')