==============
Basic Examples
--------------
+--------------
+
To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares.
>>> from linpy import *
>>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
>>> square1
And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
-
+
Binary operations and properties examples:
-
- >>> square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
- >>> #test equality
+
+ >>> # create a polyhedron from a string
+ >>> square2 = Polyhedron('1 <= x') & Polyhedron('x <= 3') & \
+ Polyhedron('1 <= y') & Polyhedron('y <= 3')
+ >>> #test equality
>>> square1 == square2
False
>>> # compute the union of two polyhedrons
>>> square1 | square2
- Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+ Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), \
+ And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
>>> # check if square1 and square2 are disjoint
>>> square1.disjoint(square2)
False
And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
>>> # compute the convex union of two polyhedrons
>>> Polyhedron(square1 | sqaure2)
- And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
-
+ And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), \
+ Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
+
Unary operation and properties examples:
-
+
>>> square1.isempty()
False
+ >>> # compute the complement of square1
+ >>> ~square1
+ Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), \
+ Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
>>> square1.symbols()
(x, y)
>>> square1.inequalities
>>> # project out the variable x
>>> square1.project([x])
And(Ge(-y + 2, 0), Ge(y, 0))
-
+
Plot Examples
-------------
>>> diamond.points()
[Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), \
Point({x: 0, y: 1}), Point({x: 1, y: 0})]
-
+
The user also can pass another plot to the :meth:`plot` method. This can be useful to compare two polyhedrons on the same axis. This example illustrates the union of two squares.
-
+
>>> from linpy import *
>>> import matplotlib.pyplot as plt
>>> from matplotlib import pylab
>>> square2.plot(plot, facecolor='blue', alpha=0.3)
>>> squares = Polyhedron(square1 + square2)
>>> squares.plot(plot, facecolor='blue', alpha=0.3)
- >>> pylab.show()
-
+ >>> pylab.show()
+
.. figure:: images/union.jpg
- :align: center
-
-
-
+ :align: center
+
+
+