Fix methods Domain._sort_polygon_2d(), Domain._sort_polygon_3d()
[linpy.git] / pypol / polyhedra.py
index 3db8f40..69ed2b2 100644 (file)
@@ -1,4 +1,3 @@
-
 import functools
 import math
 import numbers
 import functools
 import math
 import numbers
@@ -6,6 +5,7 @@ import numbers
 from . import islhelper
 
 from .islhelper import mainctx, libisl
 from . import islhelper
 
 from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point, Vector
 from .linexprs import Expression, Symbol, Rational
 from .domains import Domain
 
 from .linexprs import Expression, Symbol, Rational
 from .domains import Domain
 
@@ -32,11 +32,7 @@ class Polyhedron(Domain):
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return cls.fromstring(equalities)
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return cls.fromstring(equalities)
-        elif isinstance(equalities, Polyhedron):
-            if inequalities is not None:
-                raise TypeError('too many arguments')
-            return equalities
-        elif isinstance(equalities, Domain):
+        elif isinstance(equalities, GeometricObject):
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return equalities.aspolyhedron()
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return equalities.aspolyhedron()
@@ -87,6 +83,19 @@ class Polyhedron(Domain):
     def aspolyhedron(self):
         return self
 
     def aspolyhedron(self):
         return self
 
+    def __contains__(self, point):
+        if not isinstance(point, Point):
+            raise TypeError('point must be a Point instance')
+        if self.symbols != point.symbols:
+            raise ValueError('arguments must belong to the same space')
+        for equality in self.equalities:
+            if equality.subs(point.coordinates()) != 0:
+                return False
+        for inequality in self.inequalities:
+            if inequality.subs(point.coordinates()) < 0:
+                return False
+        return True
+
     def subs(self, symbol, expression=None):
         equalities = [equality.subs(symbol, expression)
             for equality in self.equalities]
     def subs(self, symbol, expression=None):
         equalities = [equality.subs(symbol, expression)
             for equality in self.equalities]
@@ -197,16 +206,26 @@ class Polyhedron(Domain):
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
+    @classmethod
+    def _polygon_inner_point(cls, points):
+        symbols = points[0].symbols
+        coordinates = {symbol: 0 for symbol in symbols}
+        for point in points:
+            for symbol, coordinate in point.coordinates():
+                coordinates[symbol] += coordinate
+        for symbol in symbols:
+            coordinates[symbol] /= len(points)
+        return Point(coordinates)
+
     @classmethod
     def _sort_polygon_2d(cls, points):
         if len(points) <= 3:
             return points
     @classmethod
     def _sort_polygon_2d(cls, points):
         if len(points) <= 3:
             return points
-        o = sum((Vector(point) for point in points)) / len(points)
-        o = Point(o.coordinates())
+        o = cls._polygon_inner_point(points)
         angles = {}
         for m in points:
             om = Vector(o, m)
         angles = {}
         for m in points:
             om = Vector(o, m)
-            dx, dy = (coordinate for symbol, coordinates in om.coordinates())
+            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
             angle = math.atan2(dy, dx)
             angles[m] = angle
         return sorted(points, key=angles.get)
             angle = math.atan2(dy, dx)
             angles[m] = angle
         return sorted(points, key=angles.get)
@@ -215,13 +234,18 @@ class Polyhedron(Domain):
     def _sort_polygon_3d(cls, points):
         if len(points) <= 3:
             return points
     def _sort_polygon_3d(cls, points):
         if len(points) <= 3:
             return points
-        o = sum((Vector(point) for point in points)) / len(points)
-        o = Point(o.coordinates())
-        a, b = points[:2]
+        o = cls._polygon_inner_point(points)
+        a = points[0]
         oa = Vector(o, a)
         oa = Vector(o, a)
-        ob = Vector(o, b)
         norm_oa = oa.norm()
         norm_oa = oa.norm()
-        u = (oa.cross(ob)).asunit()
+        for b in points[1:]:
+            ob = Vector(o, b)
+            u = oa.cross(ob)
+            if not u.isnull():
+                u = u.asunit()
+                break
+        else:
+            raise ValueError('degenerate polygon')
         angles = {a: 0.}
         for m in points[1:]:
             om = Vector(o, m)
         angles = {a: 0.}
         for m in points[1:]:
             om = Vector(o, m)
@@ -233,6 +257,17 @@ class Polyhedron(Domain):
             angles[m] = angle
         return sorted(points, key=angles.get)
 
             angles[m] = angle
         return sorted(points, key=angles.get)
 
+    def faces(self):
+        vertices = self.vertices()
+        faces = []
+        for constraint in self.constraints:
+            face = []
+            for vertex in vertices:
+                if constraint.subs(vertex.coordinates()) == 0:
+                    face.append(vertex)
+            faces.append(face)
+        return faces
+
     def plot(self):
         import matplotlib.pyplot as plt
         from matplotlib.path import Path
     def plot(self):
         import matplotlib.pyplot as plt
         from matplotlib.path import Path