Improve error messages in linexprs.py
[linpy.git] / pypol / polyhedra.py
index 5d9c287..e745d7d 100644 (file)
@@ -5,7 +5,7 @@ import numbers
 from . import islhelper
 
 from .islhelper import mainctx, libisl
-from .geometry import GeometricObject, Point
+from .geometry import GeometricObject, Point, Vector
 from .linexprs import Expression, Symbol, Rational
 from .domains import Domain
 
@@ -206,16 +206,26 @@ class Polyhedron(Domain):
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
+    @classmethod
+    def _polygon_inner_point(cls, points):
+        symbols = points[0].symbols
+        coordinates = {symbol: 0 for symbol in symbols}
+        for point in points:
+            for symbol, coordinate in point.coordinates():
+                coordinates[symbol] += coordinate
+        for symbol in symbols:
+            coordinates[symbol] /= len(points)
+        return Point(coordinates)
+
     @classmethod
     def _sort_polygon_2d(cls, points):
         if len(points) <= 3:
             return points
-        o = sum((Vector(point) for point in points)) / len(points)
-        o = Point(o.coordinates())
+        o = cls._polygon_inner_point(points)
         angles = {}
         for m in points:
             om = Vector(o, m)
-            dx, dy = (coordinate for symbol, coordinates in om.coordinates())
+            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
             angle = math.atan2(dy, dx)
             angles[m] = angle
         return sorted(points, key=angles.get)
@@ -224,13 +234,18 @@ class Polyhedron(Domain):
     def _sort_polygon_3d(cls, points):
         if len(points) <= 3:
             return points
-        o = sum((Vector(point) for point in points)) / len(points)
-        o = Point(o.coordinates())
-        a, b = points[:2]
+        o = cls._polygon_inner_point(points)
+        a = points[0]
         oa = Vector(o, a)
-        ob = Vector(o, b)
         norm_oa = oa.norm()
-        u = (oa.cross(ob)).asunit()
+        for b in points[1:]:
+            ob = Vector(o, b)
+            u = oa.cross(ob)
+            if not u.isnull():
+                u = u.asunit()
+                break
+        else:
+            raise ValueError('degenerate polygon')
         angles = {a: 0.}
         for m in points[1:]:
             om = Vector(o, m)
@@ -242,6 +257,17 @@ class Polyhedron(Domain):
             angles[m] = angle
         return sorted(points, key=angles.get)
 
+    def faces(self):
+        vertices = self.vertices()
+        faces = []
+        for constraint in self.constraints:
+            face = []
+            for vertex in vertices:
+                if constraint.subs(vertex.coordinates()) == 0:
+                    face.append(vertex)
+            faces.append(face)
+        return faces
+
     def plot(self):
         import matplotlib.pyplot as plt
         from matplotlib.path import Path
@@ -285,16 +311,18 @@ class Polyhedron(Domain):
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
-        if isinstance(left, numbers.Rational):
-            left = Rational(left)
-        elif not isinstance(left, Expression):
-            raise TypeError('left must be a a rational number '
-                'or a linear expression')
-        if isinstance(right, numbers.Rational):
-            right = Rational(right)
-        elif not isinstance(right, Expression):
-            raise TypeError('right must be a a rational number '
-                'or a linear expression')
+        if not isinstance(left, Expression):
+            if isinstance(left, numbers.Rational):
+                left = Rational(left)
+            else:
+                raise TypeError('left must be a a rational number '
+                    'or a linear expression')
+        if not isinstance(right, Expression):
+            if isinstance(right, numbers.Rational):
+                right = Rational(right)
+            else:
+                raise TypeError('right must be a a rational number '
+                    'or a linear expression')
         return func(left, right)
     return wrapper