return '({})'.format(string)
def __repr__(self):
- string = '{}({{'.format(self.__class__.__name__)
- for i, (symbol, coefficient) in enumerate(self.coefficients()):
- if i != 0:
- string += ', '
- string += '{!r}: {!r}'.format(symbol, coefficient)
- string += '}}, {!r})'.format(self.constant)
- return string
+ return '{}({!r})'.format(self.__class__.__name__, str(self))
@_polymorphic_method
def __eq__(self, other):
def __gt__(self, other):
return Polyhedron(inequalities=[(self - other)._toint() - 1])
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ coefficients = {}
+ constant = 0
+ for symbol, coefficient in expr.as_coefficients_dict().items():
+ coefficient = Fraction(coefficient.p, coefficient.q)
+ if symbol == sympy.S.One:
+ constant = coefficient
+ elif isinstance(symbol, sympy.Symbol):
+ symbol = symbol.name
+ coefficients[symbol] = coefficient
+ else:
+ raise ValueError('non-linear expression: {!r}'.format(expr))
+ return cls(coefficients, constant)
+
+ def tosympy(self):
+ import sympy
+ expr = 0
+ for symbol, coefficient in self.coefficients():
+ term = coefficient * sympy.Symbol(symbol)
+ expr += term
+ expr += self.constant
+ return expr
+
class Constant(Expression):
return '{}({!r}, {!r})'.format(self.__class__.__name__,
self.constant.numerator, self.constant.denominator)
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ if isinstance(expr, sympy.Rational):
+ return cls(expr.p, expr.q)
+ elif isinstance(expr, numbers.Rational):
+ return cls(expr)
+ else:
+ raise TypeError('expr must be a sympy.Rational instance')
+
+
class Symbol(Expression):
__slots__ = Expression.__slots__ + (
def __repr__(self):
return '{}({!r})'.format(self.__class__.__name__, self._name)
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ if isinstance(expr, sympy.Symbol):
+ return cls(expr.name)
+ else:
+ raise TypeError('expr must be a sympy.Symbol instance')
+
+
def symbols(names):
if isinstance(names, str):
names = names.replace(',', ' ').split()
constraints.append('{} == 0'.format(constraint))
for constraint in self.inequalities:
constraints.append('{} >= 0'.format(constraint))
- return '{{{}}}'.format(', '.join(constraints))
+ return '{}'.format(', '.join(constraints))
def __repr__(self):
if self.isempty():
elif self.isuniverse():
return 'Universe'
else:
- equalities = list(self.equalities)
- inequalities = list(self.inequalities)
- return '{}(equalities={!r}, inequalities={!r})' \
- ''.format(self.__class__.__name__, equalities, inequalities)
+ return '{}({!r})'.format(self.__class__.__name__, str(self))
+
+ @classmethod
+ def _fromsympy(cls, expr):
+ import sympy
+ equalities = []
+ inequalities = []
+ if expr.func == sympy.And:
+ for arg in expr.args:
+ arg_eqs, arg_ins = cls._fromsympy(arg)
+ equalities.extend(arg_eqs)
+ inequalities.extend(arg_ins)
+ elif expr.func == sympy.Eq:
+ expr = Expression.fromsympy(expr.args[0] - expr.args[1])
+ equalities.append(expr)
+ else:
+ if expr.func == sympy.Lt:
+ expr = Expression.fromsympy(expr.args[1] - expr.args[0] - 1)
+ elif expr.func == sympy.Le:
+ expr = Expression.fromsympy(expr.args[1] - expr.args[0])
+ elif expr.func == sympy.Ge:
+ expr = Expression.fromsympy(expr.args[0] - expr.args[1])
+ elif expr.func == sympy.Gt:
+ expr = Expression.fromsympy(expr.args[0] - expr.args[1] - 1)
+ else:
+ raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+ inequalities.append(expr)
+ return equalities, inequalities
+
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ equalities, inequalities = cls._fromsympy(expr)
+ return cls(equalities, inequalities)
+
+ def tosympy(self):
+ import sympy
+ constraints = []
+ for equality in self.equalities:
+ constraints.append(sympy.Eq(equality.tosympy(), 0))
+ for inequality in self.inequalities:
+ constraints.append(sympy.Ge(inequality.tosympy(), 0))
+ return sympy.And(*constraints)
def _symbolunion(self, *others):
symbols = set(self.symbols)