Fix unitary tests
[linpy.git] / pypol / polyhedra.py
index f8d413e..9bfc64b 100644 (file)
@@ -1,3 +1,20 @@
+# Copyright 2014 MINES ParisTech
+#
+# This file is part of Linpy.
+#
+# Linpy is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# Linpy is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with Linpy.  If not, see <http://www.gnu.org/licenses/>.
+
 import functools
 import math
 import numbers
 import functools
 import math
 import numbers
@@ -56,14 +73,23 @@ class Polyhedron(Domain):
 
     @property
     def equalities(self):
 
     @property
     def equalities(self):
+        """
+        Return a list of the equalities in a set.
+        """
         return self._equalities
 
     @property
     def inequalities(self):
         return self._equalities
 
     @property
     def inequalities(self):
+        """
+        Return a list of the inequalities in a set.
+        """
         return self._inequalities
 
     @property
     def constraints(self):
         return self._inequalities
 
     @property
     def constraints(self):
+        """
+        Return ta list of the constraints of a set.
+        """
         return self._constraints
 
     @property
         return self._constraints
 
     @property
@@ -72,13 +98,13 @@ class Polyhedron(Domain):
 
     def disjoint(self):
         """
 
     def disjoint(self):
         """
-        Return this set as disjoint.
+        Return a set as disjoint.
         """
         return self
 
     def isuniverse(self):
         """
         """
         return self
 
     def isuniverse(self):
         """
-        Return true if this set is the Universe set.
+        Return true if a set is the Universe set.
         """
         islbset = self._toislbasicset(self.equalities, self.inequalities,
             self.symbols)
         """
         islbset = self._toislbasicset(self.equalities, self.inequalities,
             self.symbols)
@@ -88,7 +114,7 @@ class Polyhedron(Domain):
 
     def aspolyhedron(self):
         """
 
     def aspolyhedron(self):
         """
-        Return polyhedral hull of this set.
+        Return polyhedral hull of a set.
         """
         return self
 
         """
         return self
 
@@ -106,18 +132,43 @@ class Polyhedron(Domain):
         return True
 
     def subs(self, symbol, expression=None):
         return True
 
     def subs(self, symbol, expression=None):
+        """
+        Subsitute the given value into an expression and return the resulting
+        expression.
+        """
         equalities = [equality.subs(symbol, expression)
             for equality in self.equalities]
         inequalities = [inequality.subs(symbol, expression)
             for inequality in self.inequalities]
         return Polyhedron(equalities, inequalities)
 
         equalities = [equality.subs(symbol, expression)
             for equality in self.equalities]
         inequalities = [inequality.subs(symbol, expression)
             for inequality in self.inequalities]
         return Polyhedron(equalities, inequalities)
 
+    def _asinequalities(self):
+        inequalities = list(self.equalities)
+        inequalities.extend([-expression for expression in self.equalities])
+        inequalities.extend(self.inequalities)
+        return inequalities
+
+    def widen(self, other):
+        if not isinstance(other, Polyhedron):
+            raise ValueError('argument must be a Polyhedron instance')
+        inequalities1 = self._asinequalities()
+        inequalities2 = other._asinequalities()
+        inequalities = []
+        for inequality1 in inequalities1:
+            if other <= Polyhedron(inequalities=[inequality1]):
+                inequalities.append(inequality1)
+        for inequality2 in inequalities2:
+            for i in range(len(inequalities1)):
+                inequalities3 = inequalities1[:i] + inequalities[i + 1:]
+                inequalities3.append(inequality2)
+                polyhedron3 = Polyhedron(inequalities=inequalities3)
+                if self == polyhedron3:
+                    inequalities.append(inequality2)
+                    break
+        return Polyhedron(inequalities=inequalities)
+
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
-        if libisl.isl_basic_set_is_empty(islbset):
-            return Empty
-        if libisl.isl_basic_set_is_universe(islbset):
-            return Universe
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
         equalities = []
         inequalities = []
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
         equalities = []
         inequalities = []
@@ -198,6 +249,7 @@ class Polyhedron(Domain):
         else:
             return 'And({})'.format(', '.join(strings))
 
         else:
             return 'And({})'.format(', '.join(strings))
 
+
     def _repr_latex_(self):
         strings = []
         for equality in self.equalities:
     def _repr_latex_(self):
         strings = []
         for equality in self.equalities:
@@ -208,12 +260,18 @@ class Polyhedron(Domain):
 
     @classmethod
     def fromsympy(cls, expr):
 
     @classmethod
     def fromsympy(cls, expr):
+        """
+        Convert a sympy object to an expression.
+        """
         domain = Domain.fromsympy(expr)
         if not isinstance(domain, Polyhedron):
             raise ValueError('non-polyhedral expression: {!r}'.format(expr))
         return domain
 
     def tosympy(self):
         domain = Domain.fromsympy(expr)
         if not isinstance(domain, Polyhedron):
             raise ValueError('non-polyhedral expression: {!r}'.format(expr))
         return domain
 
     def tosympy(self):
+        """
+        Return an expression as a sympy object.
+        """
         import sympy
         constraints = []
         for equality in self.equalities:
         import sympy
         constraints = []
         for equality in self.equalities:
@@ -236,6 +294,11 @@ class EmptyType(Polyhedron):
         self._dimension = 0
         return self
 
         self._dimension = 0
         return self
 
+    def widen(self, other):
+        if not isinstance(other, Polyhedron):
+            raise ValueError('argument must be a Polyhedron instance')
+        return other
+
     def __repr__(self):
         return 'Empty'
 
     def __repr__(self):
         return 'Empty'
 
@@ -288,41 +351,41 @@ def _polymorphic(func):
 @_polymorphic
 def Lt(left, right):
     """
 @_polymorphic
 def Lt(left, right):
     """
-    Return true if the first set is less than the second.
+    Assert first set is less than the second set.
     """
     return Polyhedron([], [right - left - 1])
 
 @_polymorphic
 def Le(left, right):
     """
     """
     return Polyhedron([], [right - left - 1])
 
 @_polymorphic
 def Le(left, right):
     """
-    Return true the first set is less than or equal to the second.
+    Assert first set is less than or equal to the second set.
     """
     return Polyhedron([], [right - left])
 
 @_polymorphic
 def Eq(left, right):
     """
     """
     return Polyhedron([], [right - left])
 
 @_polymorphic
 def Eq(left, right):
     """
-    Return true if the sets are equal.
+    Assert first set is equal to the second set.
     """
     return Polyhedron([left - right], [])
 
 @_polymorphic
 def Ne(left, right):
     """
     """
     return Polyhedron([left - right], [])
 
 @_polymorphic
 def Ne(left, right):
     """
-    Return true if the sets are NOT equal.
+    Assert first set is not equal to the second set.
     """
     return ~Eq(left, right)
 
 @_polymorphic
 def Gt(left, right):
     """
     """
     return ~Eq(left, right)
 
 @_polymorphic
 def Gt(left, right):
     """
-    Return true if the first set is greater than the second set.
+    Assert first set is greater than the second set.
     """
     return Polyhedron([], [left - right - 1])
 
 @_polymorphic
 def Ge(left, right):
     """
     """
     return Polyhedron([], [left - right - 1])
 
 @_polymorphic
 def Ge(left, right):
     """
-    Return true if the first set is greater than or equal the second set.
+    Assert first set is greater than or equal to the second set.
     """
     return Polyhedron([], [left - right])
     """
     return Polyhedron([], [left - right])