__all__ = [
- 'Expression',
+ 'LinExpr',
'Symbol', 'Dummy', 'symbols',
'Rational',
]
def _polymorphic(func):
@functools.wraps(func)
def wrapper(left, right):
- if isinstance(right, Expression):
+ if isinstance(right, LinExpr):
return func(left, right)
elif isinstance(right, numbers.Rational):
right = Rational(right)
return wrapper
-class Expression:
+class LinExpr:
"""
- This class implements linear expressions.
+ A linear expression consists of a list of coefficient-variable pairs
+ that capture the linear terms, plus a constant term. Linear expressions
+ are used to build constraints. They are temporary objects that typically
+ have short lifespans.
+
+ Linear expressions are generally built using overloaded operators. For
+ example, if x is a Symbol, then x + 1 is an instance of LinExpr.
+
+ LinExpr instances are hashable, and should be treated as immutable.
"""
def __new__(cls, coefficients=None, constant=0):
+ """
+ Return a linear expression from a dictionary or a sequence, that maps
+ symbols to their coefficients, and a constant term. The coefficients and
+ the constant term must be rational numbers.
+
+ For example, the linear expression x + 2y + 1 can be constructed using
+ one of the following instructions:
+
+ >>> x, y = symbols('x y')
+ >>> LinExpr({x: 1, y: 2}, 1)
+ >>> LinExpr([(x, 1), (y, 2)], 1)
+
+ However, it may be easier to use overloaded operators:
+
+ >>> x, y = symbols('x y')
+ >>> x + 2*y + 1
+
+ Alternatively, linear expressions can be constructed from a string:
+
+ >>> LinExpr('x + 2*y + 1')
+
+ A linear expression with a single symbol of coefficient 1 and no
+ constant term is automatically subclassed as a Symbol instance. A linear
+ expression with no symbol, only a constant term, is automatically
+ subclassed as a Rational instance.
+ """
if isinstance(coefficients, str):
if constant != 0:
raise TypeError('too many arguments')
- return Expression.fromstring(coefficients)
+ return LinExpr.fromstring(coefficients)
if coefficients is None:
return Rational(constant)
if isinstance(coefficients, Mapping):
return self
def coefficient(self, symbol):
+ """
+ Return the coefficient value of the given symbol, or 0 if the symbol
+ does not appear in the expression.
+ """
if not isinstance(symbol, Symbol):
raise TypeError('symbol must be a Symbol instance')
- return Rational(self._coefficients.get(symbol, 0))
+ return self._coefficients.get(symbol, Fraction(0))
__getitem__ = coefficient
def coefficients(self):
+ """
+ Iterate over the pairs (symbol, value) of linear terms in the
+ expression. The constant term is ignored.
+ """
for symbol, coefficient in self._coefficients.items():
- yield symbol, Rational(coefficient)
+ yield symbol, coefficient
@property
def constant(self):
- return Rational(self._constant)
+ """
+ The constant term of the expression.
+ """
+ return self._constant
@property
def symbols(self):
+ """
+ The tuple of symbols present in the expression, sorted according to
+ Symbol.sortkey().
+ """
return self._symbols
@property
def dimension(self):
+ """
+ The dimension of the expression, i.e. the number of symbols present in
+ it.
+ """
return self._dimension
def __hash__(self):
return hash((tuple(self._coefficients.items()), self._constant))
def isconstant(self):
+ """
+ Return True if the expression only consists of a constant term. In this
+ case, it is a Rational instance.
+ """
return False
def issymbol(self):
+ """
+ Return True if an expression only consists of a symbol with coefficient
+ 1. In this case, it is a Symbol instance.
+ """
return False
def values(self):
+ """
+ Iterate over the coefficient values in the expression, and the constant
+ term.
+ """
for coefficient in self._coefficients.values():
- yield Rational(coefficient)
- yield Rational(self._constant)
+ yield coefficient
+ yield self._constant
def __bool__(self):
return True
@_polymorphic
def __add__(self, other):
+ """
+ Return the sum of two linear expressions.
+ """
coefficients = defaultdict(Fraction, self._coefficients)
for symbol, coefficient in other._coefficients.items():
coefficients[symbol] += coefficient
constant = self._constant + other._constant
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
__radd__ = __add__
@_polymorphic
def __sub__(self, other):
+ """
+ Return the difference between two linear expressions.
+ """
coefficients = defaultdict(Fraction, self._coefficients)
for symbol, coefficient in other._coefficients.items():
coefficients[symbol] -= coefficient
constant = self._constant - other._constant
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
@_polymorphic
def __rsub__(self, other):
return other - self
def __mul__(self, other):
+ """
+ Return the product of the linear expression by a rational.
+ """
if isinstance(other, numbers.Rational):
coefficients = ((symbol, coefficient * other)
for symbol, coefficient in self._coefficients.items())
constant = self._constant * other
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
return NotImplemented
__rmul__ = __mul__
def __truediv__(self, other):
+ """
+ Return the quotient of the linear expression by a rational.
+ """
if isinstance(other, numbers.Rational):
coefficients = ((symbol, coefficient / other)
for symbol, coefficient in self._coefficients.items())
constant = self._constant / other
- return Expression(coefficients, constant)
+ return LinExpr(coefficients, constant)
return NotImplemented
@_polymorphic
def __eq__(self, other):
- # returns a boolean, not a constraint
- # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
- return isinstance(other, Expression) and \
+ """
+ Test whether two linear expressions are equal.
+ """
+ return isinstance(other, LinExpr) and \
self._coefficients == other._coefficients and \
self._constant == other._constant
return Gt(self, other)
def scaleint(self):
+ """
+ Return the expression multiplied by its lowest common denominator to
+ make all values integer.
+ """
lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
return self * lcm
def subs(self, symbol, expression=None):
+ """
+ Substitute the given symbol by an expression and return the resulting
+ expression. Raise TypeError if the resulting expression is not linear.
+
+ >>> x, y = symbols('x y')
+ >>> e = x + 2*y + 1
+ >>> e.subs(y, x - 1)
+ 3*x - 1
+
+ To perform multiple substitutions at once, pass a sequence or a
+ dictionary of (old, new) pairs to subs.
+
+ >>> e.subs({x: y, y: x})
+ 2*x + y + 1
+ """
if expression is None:
if isinstance(symbol, Mapping):
symbol = symbol.items()
if othersymbol != symbol]
coefficient = result._coefficients.get(symbol, 0)
constant = result._constant
- result = Expression(coefficients, constant) + coefficient*expression
+ result = LinExpr(coefficients, constant) + coefficient*expression
return result
@classmethod
@classmethod
def fromstring(cls, string):
+ """
+ Create an expression from a string. Raise SyntaxError if the string is
+ not properly formatted.
+ """
# add implicit multiplication operators, e.g. '5x' -> '5*x'
- string = Expression._RE_NUM_VAR.sub(r'\1*\2', string)
+ string = LinExpr._RE_NUM_VAR.sub(r'\1*\2', string)
tree = ast.parse(string, 'eval')
- return cls._fromast(tree)
+ expr = cls._fromast(tree)
+ if not isinstance(expr, cls):
+ raise SyntaxError('invalid syntax')
+ return expr
def __repr__(self):
string = ''
@classmethod
def fromsympy(cls, expr):
+ """
+ Create a linear expression from a sympy expression. Raise TypeError is
+ the sympy expression is not linear.
+ """
import sympy
coefficients = []
constant = 0
coefficient = Fraction(coefficient.p, coefficient.q)
if symbol == sympy.S.One:
constant = coefficient
+ elif isinstance(symbol, sympy.Dummy):
+ # we cannot properly convert dummy symbols
+ raise TypeError('cannot convert dummy symbols')
elif isinstance(symbol, sympy.Symbol):
symbol = Symbol(symbol.name)
coefficients.append((symbol, coefficient))
else:
- raise ValueError('non-linear expression: {!r}'.format(expr))
- return Expression(coefficients, constant)
+ raise TypeError('non-linear expression: {!r}'.format(expr))
+ expr = LinExpr(coefficients, constant)
+ if not isinstance(expr, cls):
+ raise TypeError('cannot convert to a {} instance'.format(cls.__name__))
+ return expr
def tosympy(self):
+ """
+ Convert the linear expression to a sympy expression.
+ """
import sympy
expr = 0
for symbol, coefficient in self.coefficients():
return expr
-class Symbol(Expression):
+class Symbol(LinExpr):
+ """
+ Symbols are the basic components to build expressions and constraints.
+ They correspond to mathematical variables. Symbols are instances of
+ class LinExpr and inherit its functionalities.
+
+ Two instances of Symbol are equal if they have the same name.
+ """
def __new__(cls, name):
+ """
+ Return a symbol with the name string given in argument.
+ """
if not isinstance(name, str):
raise TypeError('name must be a string')
+ node = ast.parse(name)
+ try:
+ name = node.body[0].value.id
+ except (AttributeError, SyntaxError):
+ raise SyntaxError('invalid syntax')
self = object().__new__(cls)
- self._name = name.strip()
+ self._name = name
self._coefficients = {self: Fraction(1)}
self._constant = Fraction(0)
self._symbols = (self,)
@property
def name(self):
+ """
+ The name of the symbol.
+ """
return self._name
def __hash__(self):
return hash(self.sortkey())
def sortkey(self):
+ """
+ Return a sorting key for the symbol. It is useful to sort a list of
+ symbols in a consistent order, as comparison functions are overridden
+ (see the documentation of class LinExpr).
+
+ >>> sort(symbols, key=Symbol.sortkey)
+ """
return self.name,
def issymbol(self):
return self.sortkey() == other.sortkey()
def asdummy(self):
+ """
+ Return a new Dummy symbol instance with the same name.
+ """
return Dummy(self.name)
- @classmethod
- def _fromast(cls, node):
- if isinstance(node, ast.Module) and len(node.body) == 1:
- return cls._fromast(node.body[0])
- elif isinstance(node, ast.Expr):
- return cls._fromast(node.value)
- elif isinstance(node, ast.Name):
- return Symbol(node.id)
- raise SyntaxError('invalid syntax')
-
def __repr__(self):
return self.name
def _repr_latex_(self):
return '$${}$$'.format(self.name)
- @classmethod
- def fromsympy(cls, expr):
- import sympy
- if isinstance(expr, sympy.Dummy):
- return Dummy(expr.name)
- elif isinstance(expr, sympy.Symbol):
- return Symbol(expr.name)
- else:
- raise TypeError('expr must be a sympy.Symbol instance')
+
+def symbols(names):
+ """
+ This function returns a tuple of symbols whose names are taken from a comma
+ or whitespace delimited string, or a sequence of strings. It is useful to
+ define several symbols at once.
+
+ >>> x, y = symbols('x y')
+ >>> x, y = symbols('x, y')
+ >>> x, y = symbols(['x', 'y'])
+ """
+ if isinstance(names, str):
+ names = names.replace(',', ' ').split()
+ return tuple(Symbol(name) for name in names)
class Dummy(Symbol):
+ """
+ A variation of Symbol in which all symbols are unique and identified by
+ an internal count index. If a name is not supplied then a string value
+ of the count index will be used. This is useful when a unique, temporary
+ variable is needed and the name of the variable used in the expression
+ is not important.
+
+ Unlike Symbol, Dummy instances with the same name are not equal:
+
+ >>> x = Symbol('x')
+ >>> x1, x2 = Dummy('x'), Dummy('x')
+ >>> x == x1
+ False
+ >>> x1 == x2
+ False
+ >>> x1 == x1
+ True
+ """
_count = 0
def __new__(cls, name=None):
+ """
+ Return a fresh dummy symbol with the name string given in argument.
+ """
if name is None:
name = 'Dummy_{}'.format(Dummy._count)
elif not isinstance(name, str):
return '$${}_{{{}}}$$'.format(self.name, self._index)
-def symbols(names):
- if isinstance(names, str):
- names = names.replace(',', ' ').split()
- return tuple(Symbol(name) for name in names)
-
-
-class Rational(Expression, Fraction):
+class Rational(LinExpr, Fraction):
+ """
+ A particular case of linear expressions are rational values, i.e. linear
+ expressions consisting only of a constant term, with no symbol. They are
+ implemented by the Rational class, that inherits from both LinExpr and
+ fractions.Fraction classes.
+ """
def __new__(cls, numerator=0, denominator=None):
self = object().__new__(cls)
else:
return '$$\\frac{{{}}}{{{}}}$$'.format(self.numerator,
self.denominator)
-
- @classmethod
- def fromsympy(cls, expr):
- import sympy
- if isinstance(expr, sympy.Rational):
- return Rational(expr.p, expr.q)
- elif isinstance(expr, numbers.Rational):
- return Rational(expr)
- else:
- raise TypeError('expr must be a sympy.Rational instance')