Fix Expression.__hash__
[linpy.git] / pypol / linear.py
index 5b5d8aa..2c71c02 100644 (file)
@@ -1,19 +1,49 @@
-
+import ctypes, ctypes.util
 import functools
 import numbers
 
 from fractions import Fraction, gcd
 
 import functools
 import numbers
 
 from fractions import Fraction, gcd
 
+from . import isl
+from .isl import libisl
+
 
 __all__ = [
 
 __all__ = [
-    'Expression',
-    'constant', 'symbol', 'symbols',
+    'Expression', 'Constant', 'Symbol', 'symbols',
     'eq', 'le', 'lt', 'ge', 'gt',
     'Polyhedron',
     'empty', 'universe'
 ]
 
 
     'eq', 'le', 'lt', 'ge', 'gt',
     'Polyhedron',
     'empty', 'universe'
 ]
 
 
+def _polymorphic_method(func):
+    @functools.wraps(func)
+    def wrapper(a, b):
+        if isinstance(b, Expression):
+            return func(a, b)
+        if isinstance(b, numbers.Rational):
+            b = Constant(b)
+            return func(a, b)
+        return NotImplemented
+    return wrapper
+
+def _polymorphic_operator(func):
+    # A polymorphic operator should call a polymorphic method, hence we just
+    # have to test the left operand.
+    @functools.wraps(func)
+    def wrapper(a, b):
+        if isinstance(a, numbers.Rational):
+            a = Constant(a)
+            return func(a, b)
+        elif isinstance(a, Expression):
+            return func(a, b)
+        raise TypeError('arguments must be linear expressions')
+    return wrapper
+
+
+_main_ctx = isl.Context()
+
+
 class Expression:
     """
     This class implements linear expressions.
 class Expression:
     """
     This class implements linear expressions.
@@ -24,37 +54,56 @@ class Expression:
             if constant:
                 raise TypeError('too many arguments')
             return cls.fromstring(coefficients)
             if constant:
                 raise TypeError('too many arguments')
             return cls.fromstring(coefficients)
-        self = super().__new__(cls)
-        self._coefficients = {}
         if isinstance(coefficients, dict):
             coefficients = coefficients.items()
         if isinstance(coefficients, dict):
             coefficients = coefficients.items()
-        if coefficients is not None:
-            for symbol, coefficient in coefficients:
-                if isinstance(symbol, Expression) and symbol.issymbol():
-                    symbol = str(symbol)
-                elif not isinstance(symbol, str):
-                    raise TypeError('symbols must be strings')
-                if not isinstance(coefficient, numbers.Rational):
-                    raise TypeError('coefficients must be rational numbers')
-                if coefficient != 0:
-                    self._coefficients[symbol] = coefficient
+        if coefficients is None:
+            return Constant(constant)
+        coefficients = [(symbol, coefficient)
+                for symbol, coefficient in coefficients if coefficient != 0]
+        if len(coefficients) == 0:
+            return Constant(constant)
+        elif len(coefficients) == 1 and constant == 0:
+            symbol, coefficient = coefficients[0]
+            if coefficient == 1:
+                return Symbol(symbol)
+        self = object().__new__(cls)
+        self._coefficients = {}
+        for symbol, coefficient in coefficients:
+            if isinstance(symbol, Symbol):
+                symbol = str(symbol)
+            elif not isinstance(symbol, str):
+                raise TypeError('symbols must be strings or Symbol instances')
+            if isinstance(coefficient, Constant):
+                coefficient = coefficient.constant
+            if not isinstance(coefficient, numbers.Rational):
+                raise TypeError('coefficients must be rational numbers or Constant instances')
+            self._coefficients[symbol] = coefficient
+        if isinstance(constant, Constant):
+            constant = constant.constant
         if not isinstance(constant, numbers.Rational):
         if not isinstance(constant, numbers.Rational):
-            raise TypeError('constant must be a rational number')
+            raise TypeError('constant must be a rational number or a Constant instance')
         self._constant = constant
         self._constant = constant
+        self._symbols = tuple(sorted(self._coefficients))
+        self._dimension = len(self._symbols)
         return self
 
         return self
 
+    @classmethod
+    def fromstring(cls, string):
+        raise NotImplementedError
+
+    @property
     def symbols(self):
     def symbols(self):
-        yield from sorted(self._coefficients)
+        return self._symbols
 
     @property
     def dimension(self):
 
     @property
     def dimension(self):
-        return len(list(self.symbols()))
+        return self._dimension
 
     def coefficient(self, symbol):
 
     def coefficient(self, symbol):
-        if isinstance(symbol, Expression) and symbol.issymbol():
+        if isinstance(symbol, Symbol):
             symbol = str(symbol)
         elif not isinstance(symbol, str):
             symbol = str(symbol)
         elif not isinstance(symbol, str):
-            raise TypeError('symbol must be a string')
+            raise TypeError('symbol must be a string or a Symbol instance')
         try:
             return self._coefficients[symbol]
         except KeyError:
         try:
             return self._coefficients[symbol]
         except KeyError:
@@ -63,7 +112,7 @@ class Expression:
     __getitem__ = coefficient
 
     def coefficients(self):
     __getitem__ = coefficient
 
     def coefficients(self):
-        for symbol in self.symbols():
+        for symbol in self.symbols:
             yield symbol, self.coefficient(symbol)
 
     @property
             yield symbol, self.coefficient(symbol)
 
     @property
@@ -71,24 +120,22 @@ class Expression:
         return self._constant
 
     def isconstant(self):
         return self._constant
 
     def isconstant(self):
-        return len(self._coefficients) == 0
+        return False
 
     def values(self):
 
     def values(self):
-        for symbol in self.symbols():
+        for symbol in self.symbols:
             yield self.coefficient(symbol)
         yield self.constant
 
             yield self.coefficient(symbol)
         yield self.constant
 
+    @property
     def symbol(self):
     def symbol(self):
-        if not self.issymbol():
-            raise ValueError('not a symbol: {}'.format(self))
-        for symbol in self.symbols():
-            return symbol
+        raise ValueError('not a symbol: {}'.format(self))
 
     def issymbol(self):
 
     def issymbol(self):
-        return len(self._coefficients) == 1 and self._constant == 0
+        return False
 
     def __bool__(self):
 
     def __bool__(self):
-        return (not self.isconstant()) or bool(self.constant)
+        True
 
     def __pos__(self):
         return self
 
     def __pos__(self):
         return self
@@ -96,18 +143,7 @@ class Expression:
     def __neg__(self):
         return self * -1
 
     def __neg__(self):
         return self * -1
 
-    def _polymorphic(func):
-        @functools.wraps(func)
-        def wrapper(self, other):
-            if isinstance(other, Expression):
-                return func(self, other)
-            if isinstance(other, numbers.Rational):
-                other = Expression(constant=other)
-                return func(self, other)
-            return NotImplemented
-        return wrapper
-
-    @_polymorphic
+    @_polymorphic_method
     def __add__(self, other):
         coefficients = dict(self.coefficients())
         for symbol, coefficient in other.coefficients():
     def __add__(self, other):
         coefficients = dict(self.coefficients())
         for symbol, coefficient in other.coefficients():
@@ -120,7 +156,7 @@ class Expression:
 
     __radd__ = __add__
 
 
     __radd__ = __add__
 
-    @_polymorphic
+    @_polymorphic_method
     def __sub__(self, other):
         coefficients = dict(self.coefficients())
         for symbol, coefficient in other.coefficients():
     def __sub__(self, other):
         coefficients = dict(self.coefficients())
         for symbol, coefficient in other.coefficients():
@@ -131,9 +167,10 @@ class Expression:
         constant = self.constant - other.constant
         return Expression(coefficients, constant)
 
         constant = self.constant - other.constant
         return Expression(coefficients, constant)
 
-    __rsub__ = __sub__
+    def __rsub__(self, other):
+        return -(self - other)
 
 
-    @_polymorphic
+    @_polymorphic_method
     def __mul__(self, other):
         if other.isconstant():
             coefficients = dict(self.coefficients())
     def __mul__(self, other):
         if other.isconstant():
             coefficients = dict(self.coefficients())
@@ -148,7 +185,7 @@ class Expression:
 
     __rmul__ = __mul__
 
 
     __rmul__ = __mul__
 
-    @_polymorphic
+    @_polymorphic_method
     def __truediv__(self, other):
         if other.isconstant():
             coefficients = dict(self.coefficients())
     def __truediv__(self, other):
         if other.isconstant():
             coefficients = dict(self.coefficients())
@@ -163,7 +200,7 @@ class Expression:
         return NotImplemented
 
     def __rtruediv__(self, other):
         return NotImplemented
 
     def __rtruediv__(self, other):
-        if isinstance(other, Rational):
+        if isinstance(other, self):
             if self.isconstant():
                 constant = Fraction(other, self.constant)
                 return Expression(constant=constant)
             if self.isconstant():
                 constant = Fraction(other, self.constant)
                 return Expression(constant=constant)
@@ -174,10 +211,9 @@ class Expression:
 
     def __str__(self):
         string = ''
 
     def __str__(self):
         string = ''
-        symbols = sorted(self.symbols())
         i = 0
         i = 0
-        for symbol in symbols:
-            coefficient = self[symbol]
+        for symbol in self.symbols:
+            coefficient = self.coefficient(symbol)
             if coefficient == 1:
                 if i == 0:
                     string += symbol
             if coefficient == 1:
                 if i == 0:
                     string += symbol
@@ -206,6 +242,8 @@ class Expression:
         elif constant < 0:
             constant *= -1
             string += ' - {}'.format(constant)
         elif constant < 0:
             constant *= -1
             string += ' - {}'.format(constant)
+        if string == '':
+            string = '0'
         return string
 
     def _parenstr(self, always=False):
         return string
 
     def _parenstr(self, always=False):
@@ -224,11 +262,7 @@ class Expression:
         string += '}}, {!r})'.format(self.constant)
         return string
 
         string += '}}, {!r})'.format(self.constant)
         return string
 
-    @classmethod
-    def fromstring(cls, string):
-        raise NotImplementedError
-
-    @_polymorphic
+    @_polymorphic_method
     def __eq__(self, other):
         # "normal" equality
         # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
     def __eq__(self, other):
         # "normal" equality
         # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
@@ -237,41 +271,86 @@ class Expression:
                 self.constant == other.constant
 
     def __hash__(self):
                 self.constant == other.constant
 
     def __hash__(self):
-        return hash((self._coefficients, self._constant))
+        return hash((tuple(sorted(self._coefficients.items())), self._constant))
 
 
-    def _canonify(self):
+    def _toint(self):
         lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
                 [value.denominator for value in self.values()])
         return self * lcm
 
         lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
                 [value.denominator for value in self.values()])
         return self * lcm
 
-    @_polymorphic
+    @_polymorphic_method
     def _eq(self, other):
     def _eq(self, other):
-        return Polyhedron(equalities=[(self - other)._canonify()])
+        return Polyhedron(equalities=[(self - other)._toint()])
 
 
-    @_polymorphic
+    @_polymorphic_method
     def __le__(self, other):
     def __le__(self, other):
-        return Polyhedron(inequalities=[(self - other)._canonify()])
+        return Polyhedron(inequalities=[(other - self)._toint()])
 
 
-    @_polymorphic
+    @_polymorphic_method
     def __lt__(self, other):
     def __lt__(self, other):
-        return Polyhedron(inequalities=[(self - other)._canonify() + 1])
+        return Polyhedron(inequalities=[(other - self)._toint() - 1])
 
 
-    @_polymorphic
+    @_polymorphic_method
     def __ge__(self, other):
     def __ge__(self, other):
-        return Polyhedron(inequalities=[(other - self)._canonify()])
+        return Polyhedron(inequalities=[(self - other)._toint()])
 
 
-    @_polymorphic
+    @_polymorphic_method
     def __gt__(self, other):
     def __gt__(self, other):
-        return Polyhedron(inequalities=[(other - self)._canonify() + 1])
+        return Polyhedron(inequalities=[(self - other)._toint() - 1])
+
+
+class Constant(Expression):
 
 
+    def __new__(cls, numerator=0, denominator=None):
+        self = object().__new__(cls)
+        if denominator is None:
+            if isinstance(numerator, numbers.Rational):
+                self._constant = numerator
+            elif isinstance(numerator, Constant):
+                self._constant = numerator.constant
+            else:
+                raise TypeError('constant must be a rational number or a Constant instance')
+        else:
+            self._constant = Fraction(numerator, denominator)
+        self._coefficients = {}
+        self._symbols = ()
+        self._dimension = 0
+        return self
+
+    def isconstant(self):
+        return True
 
 
-def constant(numerator=0, denominator=None):
-    return Expression(constant=Fraction(numerator, denominator))
+    def __bool__(self):
+        return bool(self.constant)
 
 
-def symbol(name):
-    if not isinstance(name, str):
-        raise TypeError('name must be a string')
-    return Expression(coefficients={name: 1})
+    def __repr__(self):
+        return '{}({!r})'.format(self.__class__.__name__, self._constant)
+
+
+class Symbol(Expression):
+
+    def __new__(cls, name):
+        if isinstance(name, Symbol):
+            name = name.symbol
+        elif not isinstance(name, str):
+            raise TypeError('name must be a string or a Symbol instance')
+        self = object().__new__(cls)
+        self._coefficients = {name: 1}
+        self._constant = 0
+        self._symbols = tuple(name)
+        self._symbol = name
+        self._dimension = 1
+        return self
+
+    @property
+    def symbol(self):
+        return self._symbol
+
+    def issymbol(self):
+        return True
+
+    def __repr__(self):
+        return '{}({!r})'.format(self.__class__.__name__, self._symbol)
 
 def symbols(names):
     if isinstance(names, str):
 
 def symbols(names):
     if isinstance(names, str):
@@ -279,35 +358,23 @@ def symbols(names):
     return (symbol(name) for name in names)
 
 
     return (symbol(name) for name in names)
 
 
-def _operator(func):
-    @functools.wraps(func)
-    def wrapper(a, b):
-        if isinstance(a, numbers.Rational):
-            a = constant(a)
-        if isinstance(b, numbers.Rational):
-            b = constant(b)
-        if isinstance(a, Expression) and isinstance(b, Expression):
-            return func(a, b)
-        raise TypeError('arguments must be linear expressions')
-    return wrapper
-
-@_operator
+@_polymorphic_operator
 def eq(a, b):
     return a._eq(b)
 
 def eq(a, b):
     return a._eq(b)
 
-@_operator
+@_polymorphic_operator
 def le(a, b):
     return a <= b
 
 def le(a, b):
     return a <= b
 
-@_operator
+@_polymorphic_operator
 def lt(a, b):
     return a < b
 
 def lt(a, b):
     return a < b
 
-@_operator
+@_polymorphic_operator
 def ge(a, b):
     return a >= b
 
 def ge(a, b):
     return a >= b
 
-@_operator
+@_polymorphic_operator
 def gt(a, b):
     return a > b
 
 def gt(a, b):
     return a > b
 
@@ -331,6 +398,7 @@ class Polyhedron:
                         raise TypeError('non-integer constraint: '
                                 '{} == 0'.format(constraint))
                 self._equalities.append(constraint)
                         raise TypeError('non-integer constraint: '
                                 '{} == 0'.format(constraint))
                 self._equalities.append(constraint)
+        self._equalities = tuple(self._equalities)
         self._inequalities = []
         if inequalities is not None:
             for constraint in inequalities:
         self._inequalities = []
         if inequalities is not None:
             for constraint in inequalities:
@@ -339,33 +407,40 @@ class Polyhedron:
                         raise TypeError('non-integer constraint: '
                                 '{} <= 0'.format(constraint))
                 self._inequalities.append(constraint)
                         raise TypeError('non-integer constraint: '
                                 '{} <= 0'.format(constraint))
                 self._inequalities.append(constraint)
+        self._inequalities = tuple(self._inequalities)
+        self._constraints = self._equalities + self._inequalities
+        self._symbols = set()
+        for constraint in self._constraints:
+            self.symbols.update(constraint.symbols)
+        self._symbols = tuple(sorted(self._symbols))
         return self
 
         return self
 
+    @classmethod
+    def fromstring(cls, string):
+        raise NotImplementedError
+
     @property
     def equalities(self):
     @property
     def equalities(self):
-        yield from self._equalities
+        return self._equalities
 
     @property
     def inequalities(self):
 
     @property
     def inequalities(self):
-        yield from self._inequalities
+        return self._inequalities
 
 
+    @property
     def constraints(self):
     def constraints(self):
-        yield from self.equalities
-        yield from self.inequalities
+        return self._constraints
 
 
+    @property
     def symbols(self):
     def symbols(self):
-        s = set()
-        for constraint in self.constraints():
-            s.update(constraint.symbols)
-        yield from sorted(s)
+        return self._symbols
 
     @property
     def dimension(self):
 
     @property
     def dimension(self):
-        return len(self.symbols())
+        return len(self.symbols)
 
     def __bool__(self):
 
     def __bool__(self):
-        # return false if the polyhedron is empty, true otherwise
-        raise NotImplementedError
+        return not self.is_empty()
 
     def __contains__(self, value):
         # is the value in the polyhedron?
 
     def __contains__(self, value):
         # is the value in the polyhedron?
@@ -375,10 +450,11 @@ class Polyhedron:
         raise NotImplementedError
 
     def isempty(self):
         raise NotImplementedError
 
     def isempty(self):
-        return self == empty
+        bset = self._toisl()
+        return bool(libisl.isl_basic_set_is_empty(bset))
 
     def isuniverse(self):
 
     def isuniverse(self):
-        return self == universe
+        raise NotImplementedError
 
     def isdisjoint(self, other):
         # return true if the polyhedron has no elements in common with other
 
     def isdisjoint(self, other):
         # return true if the polyhedron has no elements in common with other
@@ -439,7 +515,7 @@ class Polyhedron:
         for constraint in self.equalities:
             constraints.append('{} == 0'.format(constraint))
         for constraint in self.inequalities:
         for constraint in self.equalities:
             constraints.append('{} == 0'.format(constraint))
         for constraint in self.inequalities:
-            constraints.append('{} <= 0'.format(constraint))
+            constraints.append('{} >= 0'.format(constraint))
         return '{{{}}}'.format(', '.join(constraints))
 
     def __repr__(self):
         return '{{{}}}'.format(', '.join(constraints))
 
     def __repr__(self):
@@ -448,11 +524,75 @@ class Polyhedron:
         return '{}(equalities={!r}, inequalities={!r})' \
                 ''.format(self.__class__.__name__, equalities, inequalities)
 
         return '{}(equalities={!r}, inequalities={!r})' \
                 ''.format(self.__class__.__name__, equalities, inequalities)
 
+    def _symbolunion(self, *others):
+        symbols = set(self.symbols)
+        for other in others:
+            symbols.update(other.symbols)
+        return sorted(symbols)
+
+    def _toisl(self, symbols=None):
+        if symbols is None:
+            symbols = self.symbols
+        num_coefficients = len(symbols)
+        space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
+        bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
+        ls = libisl.isl_local_space_from_space(space)
+        ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
+        cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
+        '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set'''
+        if list(self.equalities): #check if any equalities exist
+            for eq in self.equalities:
+                coeff_eq = dict(eq.coefficients())
+                if eq.constant:
+                    value = eq.constant
+                    ceq = libisl.isl_constraint_set_constant_si(ceq, value)
+                for eq in coeff_eq:
+                    num = coeff_eq.get(eq)
+                    iden = symbols.index(eq)
+                    ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
+            bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+        if list(self.inequalities): #check if any inequalities exist
+            for ineq in self.inequalities:
+                coeff_in = dict(ineq.coefficients())
+                if ineq.constant:
+                    value = ineq.constant
+                    cin = libisl.isl_constraint_set_constant_si(cin, value)
+                for ineq in coeff_in:
+                    num = coeff_in.get(ineq)
+                    iden = symbols.index(ineq)
+                    cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
+            bset = libisl.isl_basic_set_add_constraint(bset, cin)
+        bset = isl.BasicSet(bset)
+        return bset
+
     @classmethod
     @classmethod
-    def fromstring(cls, string):
+    def _fromisl(cls, bset):
         raise NotImplementedError
         raise NotImplementedError
-
-
-empty = le(1, 0)
-
-universe = Polyhedron()
+        equalities = ...
+        inequalities = ...
+        return cls(equalities, inequalities)
+        '''takes basic set  in isl form and puts back into python version of polyhedron
+        isl example code gives isl form as:
+            "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
+            our printer is giving form as:
+            b'{ [i0] : 1 = 0 }' '''
+        #bset = self
+        # if self._equalities:
+        #     constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
+        # elif self._inequalities:
+        #     constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
+        # print(constraints)
+        # return constraints
+
+empty = None #eq(0,1)
+universe = None #Polyhedron()
+
+
+if __name__ == '__main__':
+    ex1 = Expression(coefficients={'a': 1, 'x': 2}, constant=2)
+    ex2 = Expression(coefficients={'a': 3  , 'b': 2}, constant=3)
+    p = Polyhedron(inequalities=[ex1, ex2])
+    bs = p._toisl()
+    print(bs)
+    print('empty ?', p.isempty())
+    print('empty ?', eq(0, 1).isempty())