Constant names Empty and Universe, pretty printing
[linpy.git] / pypol / linear.py
index a562a3f..3cd7633 100644 (file)
@@ -1,19 +1,17 @@
-import ctypes, ctypes.util
 import functools
 import numbers
 
 from fractions import Fraction, gcd
 
 import functools
 import numbers
 
 from fractions import Fraction, gcd
 
-from . import isl
-from .isl import libisl
+from pypol import isl
+from pypol.isl import libisl
 
 
 __all__ = [
 
 
 __all__ = [
-    'Expression',
-    'constant', 'symbol', 'symbols',
+    'Expression', 'Constant', 'Symbol', 'symbols',
     'eq', 'le', 'lt', 'ge', 'gt',
     'Polyhedron',
     'eq', 'le', 'lt', 'ge', 'gt',
     'Polyhedron',
-    'empty', 'universe'
+    'Empty', 'Universe'
 ]
 
 
 ]
 
 
@@ -23,7 +21,7 @@ def _polymorphic_method(func):
         if isinstance(b, Expression):
             return func(a, b)
         if isinstance(b, numbers.Rational):
         if isinstance(b, Expression):
             return func(a, b)
         if isinstance(b, numbers.Rational):
-            b = constant(b)
+            b = Constant(b)
             return func(a, b)
         return NotImplemented
     return wrapper
             return func(a, b)
         return NotImplemented
     return wrapper
@@ -34,7 +32,7 @@ def _polymorphic_operator(func):
     @functools.wraps(func)
     def wrapper(a, b):
         if isinstance(a, numbers.Rational):
     @functools.wraps(func)
     def wrapper(a, b):
         if isinstance(a, numbers.Rational):
-            a = constant(a)
+            a = Constant(a)
             return func(a, b)
         elif isinstance(a, Expression):
             return func(a, b)
             return func(a, b)
         elif isinstance(a, Expression):
             return func(a, b)
@@ -55,27 +53,43 @@ class Expression:
             if constant:
                 raise TypeError('too many arguments')
             return cls.fromstring(coefficients)
             if constant:
                 raise TypeError('too many arguments')
             return cls.fromstring(coefficients)
-        self = super().__new__(cls)
-        self._coefficients = {}
         if isinstance(coefficients, dict):
             coefficients = coefficients.items()
         if isinstance(coefficients, dict):
             coefficients = coefficients.items()
-        if coefficients is not None:
-            for symbol, coefficient in coefficients:
-                if isinstance(symbol, Expression) and symbol.issymbol():
-                    symbol = str(symbol)
-                elif not isinstance(symbol, str):
-                    raise TypeError('symbols must be strings')
-                if not isinstance(coefficient, numbers.Rational):
-                    raise TypeError('coefficients must be rational numbers')
-                if coefficient != 0:
-                    self._coefficients[symbol] = coefficient
+        if coefficients is None:
+            return Constant(constant)
+        coefficients = [(symbol, coefficient)
+                for symbol, coefficient in coefficients if coefficient != 0]
+        if len(coefficients) == 0:
+            return Constant(constant)
+        elif len(coefficients) == 1 and constant == 0:
+            symbol, coefficient = coefficients[0]
+            if coefficient == 1:
+                return Symbol(symbol)
+        self = object().__new__(cls)
+        self._coefficients = {}
+        for symbol, coefficient in coefficients:
+            if isinstance(symbol, Symbol):
+                symbol = str(symbol)
+            elif not isinstance(symbol, str):
+                raise TypeError('symbols must be strings or Symbol instances')
+            if isinstance(coefficient, Constant):
+                coefficient = coefficient.constant
+            if not isinstance(coefficient, numbers.Rational):
+                raise TypeError('coefficients must be rational numbers or Constant instances')
+            self._coefficients[symbol] = coefficient
+        if isinstance(constant, Constant):
+            constant = constant.constant
         if not isinstance(constant, numbers.Rational):
         if not isinstance(constant, numbers.Rational):
-            raise TypeError('constant must be a rational number')
+            raise TypeError('constant must be a rational number or a Constant instance')
         self._constant = constant
         self._symbols = tuple(sorted(self._coefficients))
         self._dimension = len(self._symbols)
         return self
 
         self._constant = constant
         self._symbols = tuple(sorted(self._coefficients))
         self._dimension = len(self._symbols)
         return self
 
+    @classmethod
+    def fromstring(cls, string):
+        raise NotImplementedError
+
     @property
     def symbols(self):
         return self._symbols
     @property
     def symbols(self):
         return self._symbols
@@ -85,10 +99,10 @@ class Expression:
         return self._dimension
 
     def coefficient(self, symbol):
         return self._dimension
 
     def coefficient(self, symbol):
-        if isinstance(symbol, Expression) and symbol.issymbol():
+        if isinstance(symbol, Symbol):
             symbol = str(symbol)
         elif not isinstance(symbol, str):
             symbol = str(symbol)
         elif not isinstance(symbol, str):
-            raise TypeError('symbol must be a string')
+            raise TypeError('symbol must be a string or a Symbol instance')
         try:
             return self._coefficients[symbol]
         except KeyError:
         try:
             return self._coefficients[symbol]
         except KeyError:
@@ -105,30 +119,22 @@ class Expression:
         return self._constant
 
     def isconstant(self):
         return self._constant
 
     def isconstant(self):
-        return len(self._coefficients) == 0
+        return False
 
     def values(self):
         for symbol in self.symbols:
             yield self.coefficient(symbol)
         yield self.constant
 
 
     def values(self):
         for symbol in self.symbols:
             yield self.coefficient(symbol)
         yield self.constant
 
-    def values_int(self):
-        for symbol in self.symbols:
-            return self.coefficient(symbol)
-        return int(self.constant)
-
     @property
     def symbol(self):
     @property
     def symbol(self):
-        if not self.issymbol():
-            raise ValueError('not a symbol: {}'.format(self))
-        for symbol in self.symbols:
-            return symbol
+        raise ValueError('not a symbol: {}'.format(self))
 
     def issymbol(self):
 
     def issymbol(self):
-        return len(self._coefficients) == 1 and self._constant == 0
+        return False
 
     def __bool__(self):
 
     def __bool__(self):
-        return (not self.isconstant()) or bool(self.constant)
+        return True
 
     def __pos__(self):
         return self
 
     def __pos__(self):
         return self
@@ -139,7 +145,7 @@ class Expression:
     @_polymorphic_method
     def __add__(self, other):
         coefficients = dict(self.coefficients())
     @_polymorphic_method
     def __add__(self, other):
         coefficients = dict(self.coefficients())
-        for symbol, coefficient in other.coefficients:
+        for symbol, coefficient in other.coefficients():
             if symbol in coefficients:
                 coefficients[symbol] += coefficient
             else:
             if symbol in coefficients:
                 coefficients[symbol] += coefficient
             else:
@@ -152,7 +158,7 @@ class Expression:
     @_polymorphic_method
     def __sub__(self, other):
         coefficients = dict(self.coefficients())
     @_polymorphic_method
     def __sub__(self, other):
         coefficients = dict(self.coefficients())
-        for symbol, coefficient in other.coefficients:
+        for symbol, coefficient in other.coefficients():
             if symbol in coefficients:
                 coefficients[symbol] -= coefficient
             else:
             if symbol in coefficients:
                 coefficients[symbol] -= coefficient
             else:
@@ -205,8 +211,8 @@ class Expression:
     def __str__(self):
         string = ''
         i = 0
     def __str__(self):
         string = ''
         i = 0
-        for symbol in symbols:
-            coefficient = self[symbol]
+        for symbol in self.symbols:
+            coefficient = self.coefficient(symbol)
             if coefficient == 1:
                 if i == 0:
                     string += symbol
             if coefficient == 1:
                 if i == 0:
                     string += symbol
@@ -255,10 +261,6 @@ class Expression:
         string += '}}, {!r})'.format(self.constant)
         return string
 
         string += '}}, {!r})'.format(self.constant)
         return string
 
-    @classmethod
-    def fromstring(cls, string):
-        raise NotImplementedError
-
     @_polymorphic_method
     def __eq__(self, other):
         # "normal" equality
     @_polymorphic_method
     def __eq__(self, other):
         # "normal" equality
@@ -268,7 +270,7 @@ class Expression:
                 self.constant == other.constant
 
     def __hash__(self):
                 self.constant == other.constant
 
     def __hash__(self):
-        return hash((self._coefficients, self._constant))
+        return hash((tuple(sorted(self._coefficients.items())), self._constant))
 
     def _toint(self):
         lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
 
     def _toint(self):
         lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
@@ -296,42 +298,84 @@ class Expression:
         return Polyhedron(inequalities=[(self - other)._toint() - 1])
 
 
         return Polyhedron(inequalities=[(self - other)._toint() - 1])
 
 
-def constant(numerator=0, denominator=None):
-    if denominator is None and isinstance(numerator, numbers.Rational):
-        return Expression(constant=numerator)
-    else:
-        return Expression(constant=Fraction(numerator, denominator))
+class Constant(Expression):
+
+    def __new__(cls, numerator=0, denominator=None):
+        self = object().__new__(cls)
+        if denominator is None:
+            if isinstance(numerator, numbers.Rational):
+                self._constant = numerator
+            elif isinstance(numerator, Constant):
+                self._constant = numerator.constant
+            else:
+                raise TypeError('constant must be a rational number or a Constant instance')
+        else:
+            self._constant = Fraction(numerator, denominator)
+        self._coefficients = {}
+        self._symbols = ()
+        self._dimension = 0
+        return self
+
+    def isconstant(self):
+        return True
+
+    def __bool__(self):
+        return bool(self.constant)
+
+    def __repr__(self):
+        return '{}({!r})'.format(self.__class__.__name__, self._constant)
+
+
+class Symbol(Expression):
+
+    def __new__(cls, name):
+        if isinstance(name, Symbol):
+            name = name.symbol
+        elif not isinstance(name, str):
+            raise TypeError('name must be a string or a Symbol instance')
+        self = object().__new__(cls)
+        self._coefficients = {name: 1}
+        self._constant = 0
+        self._symbols = tuple(name)
+        self._symbol = name
+        self._dimension = 1
+        return self
+
+    @property
+    def symbol(self):
+        return self._symbol
+
+    def issymbol(self):
+        return True
 
 
-def symbol(name):
-    if not isinstance(name, str):
-        raise TypeError('name must be a string')
-    return Expression(coefficients={name: 1})
+    def __repr__(self):
+        return '{}({!r})'.format(self.__class__.__name__, self._symbol)
 
 def symbols(names):
     if isinstance(names, str):
         names = names.replace(',', ' ').split()
 
 def symbols(names):
     if isinstance(names, str):
         names = names.replace(',', ' ').split()
-    return (symbol(name) for name in names)
+    return (Symbol(name) for name in names)
 
 
 @_polymorphic_operator
 def eq(a, b):
 
 
 @_polymorphic_operator
 def eq(a, b):
-    return a._eq(b)
+    return a.__eq__(b)
 
 @_polymorphic_operator
 def le(a, b):
 
 @_polymorphic_operator
 def le(a, b):
-    return a <= b
+    return a.__le__(b)
 
 @_polymorphic_operator
 def lt(a, b):
 
 @_polymorphic_operator
 def lt(a, b):
-    return a < b
+    return a.__lt__(b)
 
 @_polymorphic_operator
 def ge(a, b):
 
 @_polymorphic_operator
 def ge(a, b):
-    return a >= b
+    return a.__ge__(b)
 
 @_polymorphic_operator
 def gt(a, b):
 
 @_polymorphic_operator
 def gt(a, b):
-    return a > b
+    return a.__gt__(b)
 
 
 class Polyhedron:
 
 
 class Polyhedron:
@@ -370,6 +414,10 @@ class Polyhedron:
         self._symbols = tuple(sorted(self._symbols))
         return self
 
         self._symbols = tuple(sorted(self._symbols))
         return self
 
+    @classmethod
+    def fromstring(cls, string):
+        raise NotImplementedError
+
     @property
     def equalities(self):
         return self._equalities
     @property
     def equalities(self):
         return self._equalities
@@ -378,9 +426,6 @@ class Polyhedron:
     def inequalities(self):
         return self._inequalities
 
     def inequalities(self):
         return self._inequalities
 
-    def isempty(self):
-        return bool(libisl.isl_basic_set_is_empty(self._bset))
-
     @property
     def constraints(self):
         return self._constraints
     @property
     def constraints(self):
         return self._constraints
@@ -401,26 +446,42 @@ class Polyhedron:
         raise NotImplementedError
 
     def __eq__(self, other):
         raise NotImplementedError
 
     def __eq__(self, other):
-        raise NotImplementedError
+        # works correctly when symbols is not passed
+        # should be equal if values are the same even if symbols are different
+        bset = self._toisl()
+        other = other._toisl()
+        return bool(libisl.isl_basic_set_plain_is_equal(bset, other))
 
     def isempty(self):
 
     def isempty(self):
-        return self == empty
+        bset = self._toisl()
+        return bool(libisl.isl_basic_set_is_empty(bset))
 
     def isuniverse(self):
 
     def isuniverse(self):
-        return self == universe
+        bset = self._toisl()
+        return bool(libisl.isl_basic_set_is_universe(bset))
 
     def isdisjoint(self, other):
         # return true if the polyhedron has no elements in common with other
 
     def isdisjoint(self, other):
         # return true if the polyhedron has no elements in common with other
-        raise NotImplementedError
+        #symbols = self._symbolunion(other)
+        bset = self._toisl()
+        other = other._toisl()
+        return bool(libisl.isl_set_is_disjoint(bset, other))
 
     def issubset(self, other):
 
     def issubset(self, other):
-        raise NotImplementedError
+        # check if self(bset) is a subset of other
+        symbols = self._symbolunion(other)
+        bset = self._toisl(symbols)
+        other = other._toisl(symbols)
+        return bool(libisl.isl_set_is_strict_subset(other, bset))
 
     def __le__(self, other):
         return self.issubset(other)
 
     def __lt__(self, other):
 
     def __le__(self, other):
         return self.issubset(other)
 
     def __lt__(self, other):
-        raise NotImplementedError
+        symbols = self._symbolunion(other)
+        bset = self._toisl(symbols)
+        other = other._toisl(symbols)
+        return bool(libisl.isl_set_is_strict_subset(other, bset))
 
     def issuperset(self, other):
         # test whether every element in other is in the polyhedron
 
     def issuperset(self, other):
         # test whether every element in other is in the polyhedron
@@ -430,6 +491,10 @@ class Polyhedron:
         return self.issuperset(other)
 
     def __gt__(self, other):
         return self.issuperset(other)
 
     def __gt__(self, other):
+        symbols = self._symbolunion(other)
+        bset = self._toisl(symbols)
+        other = other._toisl(symbols)
+        bool(libisl.isl_set_is_strict_subset(other, bset))
         raise NotImplementedError
 
     def union(self, *others):
         raise NotImplementedError
 
     def union(self, *others):
@@ -455,10 +520,14 @@ class Polyhedron:
     def __and__(self, other):
         return self.intersection(other)
 
     def __and__(self, other):
         return self.intersection(other)
 
-    def difference(self, *others):
-        # return a new polyhedron with elements in the polyhedron that are not
-        # in the others
-        raise NotImplementedError
+    def difference(self, other):
+        # return a new polyhedron with elements in the polyhedron that are not in the other
+        symbols = self._symbolunion(other)
+        bset = self._toisl(symbols)
+        other = other._toisl(symbols)
+        difference = libisl.isl_set_subtract(bset, other)
+        return difference
+
 
     def __sub__(self, other):
         return self.difference(other)
 
     def __sub__(self, other):
         return self.difference(other)
@@ -472,14 +541,15 @@ class Polyhedron:
         return '{{{}}}'.format(', '.join(constraints))
 
     def __repr__(self):
         return '{{{}}}'.format(', '.join(constraints))
 
     def __repr__(self):
-        equalities = list(self.equalities)
-        inequalities = list(self.inequalities)
-        return '{}(equalities={!r}, inequalities={!r})' \
-                ''.format(self.__class__.__name__, equalities, inequalities)
-
-    @classmethod
-    def fromstring(cls, string):
-        raise NotImplementedError
+        if self.isempty():
+            return 'Empty'
+        elif self.isuniverse():
+            return 'Universe'
+        else:
+            equalities = list(self.equalities)
+            inequalities = list(self.inequalities)
+            return '{}(equalities={!r}, inequalities={!r})' \
+                    ''.format(self.__class__.__name__, equalities, inequalities)
 
     def _symbolunion(self, *others):
         symbols = set(self.symbols)
 
     def _symbolunion(self, *others):
         symbols = set(self.symbols)
@@ -487,67 +557,61 @@ class Polyhedron:
             symbols.update(other.symbols)
         return sorted(symbols)
 
             symbols.update(other.symbols)
         return sorted(symbols)
 
-    def _to_isl(self, symbols=None):
+    def _toisl(self, symbols=None):
         if symbols is None:
             symbols = self.symbols
         num_coefficients = len(symbols)
         space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
         bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
         ls = libisl.isl_local_space_from_space(space)
         if symbols is None:
             symbols = self.symbols
         num_coefficients = len(symbols)
         space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
         bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
         ls = libisl.isl_local_space_from_space(space)
-        ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
-        cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
-        '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set'''
-        if list(self.equalities): #check if any equalities exist
-            for eq in self.equalities:
-                coeff_eq = dict(eq.coefficients())
-                if eq.constant:
-                    value = eq.constant
-                    ceq = libisl.isl_constraint_set_constant_si(ceq, value)
-                for eq in coeff_eq:
-                    num = coeff_eq.get(eq)
-                    iden = symbols.index(eq)
-                    ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
+        #if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set
+        for eq in self.equalities:
+            ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
+            coeff_eq = dict(eq.coefficients())
+            if eq.constant:
+                value = str(eq.constant).encode()
+                val = libisl.isl_val_read_from_str(_main_ctx, value)
+                ceq = libisl.isl_constraint_set_constant_val(ceq, val)
+            for eq in coeff_eq:
+                number = str(coeff_eq.get(eq)).encode()
+                num = libisl.isl_val_read_from_str(_main_ctx, number)
+                iden = symbols.index(eq)
+                ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
             bset = libisl.isl_basic_set_add_constraint(bset, ceq)
             bset = libisl.isl_basic_set_add_constraint(bset, ceq)
-        if list(self.inequalities): #check if any inequalities exist
-            for ineq in self.inequalities:
-                coeff_in = dict(ineq.coefficients())
-                if ineq.constant:
-                    value = ineq.constant
-                    cin = libisl.isl_constraint_set_constant_si(cin, value)
-                for ineq in coeff_in:
-                    num = coeff_in.get(ineq)
-                    iden = symbols.index(ineq)
-                    cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
+        for ineq in self.inequalities:
+            cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
+            coeff_in = dict(ineq.coefficients())
+            if ineq.constant:
+                value = str(ineq.constant).encode()
+                val = libisl.isl_val_read_from_str(_main_ctx, value)
+                cin = libisl.isl_constraint_set_constant_val(cin, val)
+            for ineq in coeff_in:
+                number = str(coeff_in.get(ineq)).encode()
+                num = libisl.isl_val_read_from_str(_main_ctx, number)
+                iden = symbols.index(ineq)
+                cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, iden, num)  #use 3 for type isl_dim_set
             bset = libisl.isl_basic_set_add_constraint(bset, cin)
         bset = isl.BasicSet(bset)
         return bset
 
     @classmethod
             bset = libisl.isl_basic_set_add_constraint(bset, cin)
         bset = isl.BasicSet(bset)
         return bset
 
     @classmethod
-    def from_isl(cls, bset):
-        '''takes basic set in isl form and puts back into python version of polyhedron
-        isl example code gives isl form as:
-            "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
-            our printer is giving form as:
-            b'{ [i0] : 1 = 0 }' '''
+    def _fromisl(cls, bset):
         raise NotImplementedError
         equalities = ...
         inequalities = ...
         return cls(equalities, inequalities)
         raise NotImplementedError
         equalities = ...
         inequalities = ...
         return cls(equalities, inequalities)
-        #bset = self
-        # if self._equalities:
-        #     constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
-        # elif self._inequalities:
-        #     constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
-        # print(constraints)
-        # return constraints
-
-empty = None #eq(0,1)
-universe = None #Polyhedron()
+        '''takes basic set  in isl form and puts back into python version of polyhedron
+        isl example code gives isl form as:
+            "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
+            our printer is giving form as:
+            { [i0, i1] : 2i1 >= -2 - i0 } '''
 
 
+Empty = eq(0,1)
+Universe = Polyhedron()
 
 if __name__ == '__main__':
 
 if __name__ == '__main__':
-    ex1 = Expression(coefficients={'a': 1, 'x': 2}, constant=2)
-    ex2 = Expression(coefficients={'a': 3  , 'b': 2}, constant=3)
-    p = Polyhedron(inequalities=[ex1, ex2])
-    bs = p._to_isl()
-    print(bs)
+    ex1 = Expression(coefficients={'a': 6, 'b': 6}, constant= 3) #this is the expression that does not work (even without adding values)
+    ex2 = Expression(coefficients={'x': 4, 'y': 2}, constant= 3)
+    p = Polyhedron(equalities=[ex2])
+    p2 = Polyhedron(equalities=[ex2])
+    print(p._toisl()) # checking is values works for toisl