Replace examples by tutorial in documentation
[linpy.git] / doc / reference.rst
index 69f0f45..64c37c6 100644 (file)
@@ -1,4 +1,6 @@
 
 
+.. _reference:
+
 Module Reference
 ================
 
 Module Reference
 ================
 
@@ -173,7 +175,6 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl
         >>> x < y
         Le(x - y + 1, 0)
 
         >>> x < y
         Le(x - y + 1, 0)
 
-
     .. method:: scaleint()
 
         Return the expression multiplied by its lowest common denominator to make all values integer.
     .. method:: scaleint()
 
         Return the expression multiplied by its lowest common denominator to make all values integer.
@@ -303,11 +304,12 @@ This space can be unbounded.
 
     The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty.
 
 
     The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty.
 
+
 Domains
 -------
 
 A *domain* is a union of polyhedra.
 Domains
 -------
 
 A *domain* is a union of polyhedra.
-Unlike polyhedra, domains allow exact computation of union and complementary operations.
+Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations.
 
 .. class:: Domain(*polyhedra)
               Domain(string)
 
 .. class:: Domain(*polyhedra)
               Domain(string)
@@ -505,7 +507,7 @@ The following functions create :class:`Polyhedron` or :class:`Domain` instances
 .. function:: Ne(expr1, expr2[, expr3, ...])
 
     Create the domain such that ``expr1 != expr2 != expr3 ...``.
 .. function:: Ne(expr1, expr2[, expr3, ...])
 
     Create the domain such that ``expr1 != expr2 != expr3 ...``.
-    The result is a :class:`Domain`, not a :class:`Polyhedron`.
+    The result is a :class:`Domain` object, not a :class:`Polyhedron`.
 
 .. function:: Ge(expr1, expr2[, expr3, ...])
 
 
 .. function:: Ge(expr1, expr2[, expr3, ...])