Plot domain added
[linpy.git] / pypol / polyhedra.py
index f93f31e..a5d9495 100644 (file)
@@ -1,9 +1,11 @@
 import functools
+import math
 import numbers
 
 from . import islhelper
 
 from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point
 from .linexprs import Expression, Rational
 from .domains import Domain
 
@@ -30,14 +32,10 @@ class Polyhedron(Domain):
             if inequalities is not None:
                 raise TypeError('too many arguments')
             return cls.fromstring(equalities)
-        elif isinstance(equalities, Polyhedron):
+        elif isinstance(equalities, GeometricObject):
             if inequalities is not None:
                 raise TypeError('too many arguments')
-            return equalities
-        elif isinstance(equalities, Domain):
-            if inequalities is not None:
-                raise TypeError('too many arguments')
-            return equalities.polyhedral_hull()
+            return equalities.aspolyhedron()
         if equalities is None:
             equalities = []
         else:
@@ -73,18 +71,47 @@ class Polyhedron(Domain):
         return self,
 
     def disjoint(self):
+        """
+        Return this set as disjoint.
+        """
         return self
 
     def isuniverse(self):
+        """
+        Return true if this set is the Universe set.
+        """
         islbset = self._toislbasicset(self.equalities, self.inequalities,
             self.symbols)
         universe = bool(libisl.isl_basic_set_is_universe(islbset))
         libisl.isl_basic_set_free(islbset)
         return universe
 
-    def polyhedral_hull(self):
+    def aspolyhedron(self):
+        """
+        Return polyhedral hull of this set.
+        """
         return self
 
+    def __contains__(self, point):
+        if not isinstance(point, Point):
+            raise TypeError('point must be a Point instance')
+        if self.symbols != point.symbols:
+            raise ValueError('arguments must belong to the same space')
+        for equality in self.equalities:
+            if equality.subs(point.coordinates()) != 0:
+                return False
+        for inequality in self.inequalities:
+            if inequality.subs(point.coordinates()) < 0:
+                return False
+        return True
+
+    def subs(self, symbol, expression=None):
+        equalities = [equality.subs(symbol, expression)
+            for equality in self.equalities]
+        inequalities = [inequality.subs(symbol, expression)
+            for inequality in self.inequalities]
+        return Polyhedron(equalities, inequalities)
+
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
@@ -164,14 +191,27 @@ class Polyhedron(Domain):
         else:
             strings = []
             for equality in self.equalities:
-                strings.append('0 == {}'.format(equality))
+                strings.append('Eq({}, 0)'.format(equality))
             for inequality in self.inequalities:
-                strings.append('0 <= {}'.format(inequality))
+                strings.append('Ge({}, 0)'.format(inequality))
             if len(strings) == 1:
                 return strings[0]
             else:
                 return 'And({})'.format(', '.join(strings))
 
+    def _repr_latex_(self):
+        if self.isempty():
+            return '$\\emptyset$'
+        elif self.isuniverse():
+            return '$\\Omega$'
+        else:
+            strings = []
+            for equality in self.equalities:
+                strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
+            for inequality in self.inequalities:
+                strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
+            return '${}$'.format(' \\wedge '.join(strings))
+
     @classmethod
     def fromsympy(cls, expr):
         domain = Domain.fromsympy(expr)
@@ -188,45 +228,64 @@ class Polyhedron(Domain):
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
 
-
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
-        if isinstance(left, numbers.Rational):
-            left = Rational(left)
-        elif not isinstance(left, Expression):
-            raise TypeError('left must be a a rational number '
-                'or a linear expression')
-        if isinstance(right, numbers.Rational):
-            right = Rational(right)
-        elif not isinstance(right, Expression):
-            raise TypeError('right must be a a rational number '
-                'or a linear expression')
+        if not isinstance(left, Expression):
+            if isinstance(left, numbers.Rational):
+                left = Rational(left)
+            else:
+                raise TypeError('left must be a a rational number '
+                    'or a linear expression')
+        if not isinstance(right, Expression):
+            if isinstance(right, numbers.Rational):
+                right = Rational(right)
+            else:
+                raise TypeError('right must be a a rational number '
+                    'or a linear expression')
         return func(left, right)
     return wrapper
 
 @_polymorphic
 def Lt(left, right):
+    """
+    Return true if the first set is less than the second.
+    """
     return Polyhedron([], [right - left - 1])
 
 @_polymorphic
 def Le(left, right):
+    """
+    Return true the first set is less than or equal to the second.
+    """
     return Polyhedron([], [right - left])
 
 @_polymorphic
 def Eq(left, right):
+    """
+    Return true if the sets are equal.
+    """
     return Polyhedron([left - right], [])
 
 @_polymorphic
 def Ne(left, right):
+    """
+    Return true if the sets are NOT equal.
+    """
     return ~Eq(left, right)
 
 @_polymorphic
 def Gt(left, right):
+    """
+    Return true if the first set is greater than the second set.
+    """
     return Polyhedron([], [left - right - 1])
 
 @_polymorphic
 def Ge(left, right):
+    """
+    Return true if the first set is greater than or equal the second set.
+    """
     return Polyhedron([], [left - right])