Derive Point and Vector from Coordinates abstract class
[linpy.git] / pypol / polyhedra.py
index 44826c1..db99753 100644 (file)
@@ -1,10 +1,11 @@
+
 import functools
 import numbers
 
 from . import islhelper
 
 from .islhelper import mainctx, libisl
-from .linexprs import Expression, Constant
+from .linexprs import Expression, Symbol, Rational
 from .domains import Domain
 
 
@@ -37,21 +38,21 @@ class Polyhedron(Domain):
         elif isinstance(equalities, Domain):
             if inequalities is not None:
                 raise TypeError('too many arguments')
-            return equalities.polyhedral_hull()
+            return equalities.aspolyhedron()
         if equalities is None:
             equalities = []
         else:
             for i, equality in enumerate(equalities):
                 if not isinstance(equality, Expression):
                     raise TypeError('equalities must be linear expressions')
-                equalities[i] = equality._toint()
+                equalities[i] = equality.scaleint()
         if inequalities is None:
             inequalities = []
         else:
             for i, inequality in enumerate(inequalities):
                 if not isinstance(inequality, Expression):
                     raise TypeError('inequalities must be linear expressions')
-                inequalities[i] = inequality._toint()
+                inequalities[i] = inequality.scaleint()
         symbols = cls._xsymbols(equalities + inequalities)
         islbset = cls._toislbasicset(equalities, inequalities, symbols)
         return cls._fromislbasicset(islbset, symbols)
@@ -82,21 +83,28 @@ class Polyhedron(Domain):
         libisl.isl_basic_set_free(islbset)
         return universe
 
-    def polyhedral_hull(self):
+    def aspolyhedron(self):
         return self
 
+    def subs(self, symbol, expression=None):
+        equalities = [equality.subs(symbol, expression)
+            for equality in self.equalities]
+        inequalities = [inequality.subs(symbol, expression)
+            for inequality in self.inequalities]
+        return Polyhedron(equalities, inequalities)
+
     @classmethod
     def _fromislbasicset(cls, islbset, symbols):
         islconstraints = islhelper.isl_basic_set_constraints(islbset)
         equalities = []
         inequalities = []
         for islconstraint in islconstraints:
-            islpr = libisl.isl_printer_to_str(mainctx)
             constant = libisl.isl_constraint_get_constant_val(islconstraint)
             constant = islhelper.isl_val_to_int(constant)
             coefficients = {}
             for index, symbol in enumerate(symbols):
-                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint, libisl.isl_dim_set, index)
+                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint,
+                    libisl.isl_dim_set, index)
                 coefficient = islhelper.isl_val_to_int(coefficient)
                 if coefficient != 0:
                     coefficients[symbol] = coefficient
@@ -164,46 +172,20 @@ class Polyhedron(Domain):
         else:
             strings = []
             for equality in self.equalities:
-                strings.append('Eq({}, 0)'.format(equality))
+                strings.append('0 == {}'.format(equality))
             for inequality in self.inequalities:
-                strings.append('Ge({}, 0)'.format(inequality))
+                strings.append('0 <= {}'.format(inequality))
             if len(strings) == 1:
                 return strings[0]
             else:
                 return 'And({})'.format(', '.join(strings))
 
-    @classmethod
-    def _fromsympy(cls, expr):
-        import sympy
-        equalities = []
-        inequalities = []
-        if expr.func == sympy.And:
-            for arg in expr.args:
-                arg_eqs, arg_ins = cls._fromsympy(arg)
-                equalities.extend(arg_eqs)
-                inequalities.extend(arg_ins)
-        elif expr.func == sympy.Eq:
-            expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            equalities.append(expr)
-        else:
-            if expr.func == sympy.Lt:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0] - 1)
-            elif expr.func == sympy.Le:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0])
-            elif expr.func == sympy.Ge:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            elif expr.func == sympy.Gt:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1] - 1)
-            else:
-                raise ValueError('non-polyhedral expression: {!r}'.format(expr))
-            inequalities.append(expr)
-        return equalities, inequalities
-
     @classmethod
     def fromsympy(cls, expr):
-        import sympy
-        equalities, inequalities = cls._fromsympy(expr)
-        return cls(equalities, inequalities)
+        domain = Domain.fromsympy(expr)
+        if not isinstance(domain, Polyhedron):
+            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+        return domain
 
     def tosympy(self):
         import sympy
@@ -213,18 +195,57 @@ class Polyhedron(Domain):
         for inequality in self.inequalities:
             constraints.append(sympy.Ge(inequality.tosympy(), 0))
         return sympy.And(*constraints)
+    
+    def plot(self):
+        import matplotlib.pyplot as plt
+        from matplotlib.path import Path
+        import matplotlib.patches as patches
+        
+        if len(self.symbols)> 3:
+            raise TypeError
+        
+        elif len(self.symbols) == 2:
+            verts = self.vertices()
+            points = []
+            codes = [Path.MOVETO]   
+            for vert in verts:
+                pairs = ()
+                for sym in sorted(vert, key=Symbol.sortkey):
+                    num = vert.get(sym)
+                    pairs = pairs + (num,)
+                points.append(pairs)
+            points.append((0.0, 0.0))
+            num = len(points)
+            while num > 2:
+                codes.append(Path.LINETO)
+                num = num - 1
+            else:
+                codes.append(Path.CLOSEPOLY)
+            path = Path(points, codes)
+            fig = plt.figure()
+            ax = fig.add_subplot(111)
+            patch = patches.PathPatch(path, facecolor='blue', lw=2)
+            ax.add_patch(patch)
+            ax.set_xlim(-5,5)
+            ax.set_ylim(-5,5)
+            plt.show()
+            
+        elif len(self.symbols)==3:
+            return 0
+            
+        return points
 
 
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
         if isinstance(left, numbers.Rational):
-            left = Constant(left)
+            left = Rational(left)
         elif not isinstance(left, Expression):
             raise TypeError('left must be a a rational number '
                 'or a linear expression')
         if isinstance(right, numbers.Rational):
-            right = Constant(right)
+            right = Rational(right)
         elif not isinstance(right, Expression):
             raise TypeError('right must be a a rational number '
                 'or a linear expression')