#!/usr/bin/env python3
+#
+# Copyright 2014 MINES ParisTech
+#
+# This file is part of LinPy.
+#
+# LinPy is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# LinPy is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with LinPy. If not, see <http://www.gnu.org/licenses/>.
-from pypol import *
+from linpy import *
+import matplotlib.pyplot as plt
+from matplotlib import pylab
a, x, y, z = symbols('a x y z')
sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
-sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
+sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 3)
sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
+p = Le(2*x+1, y) & Le(-2*x-1, y) & Le(y, 1)
+
universe = Polyhedron([])
q = sq1 - sq2
e = Empty
print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('Polyhedral hull of sq1 + sq2 is:', q.polyhedral_hull()) #test polyhedral hull
+print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull
print()
-print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq1 bounded?', sq1.isbounded()) #bounded should return True
print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
print()
print('sq6:', sq6)
-print('sq6 simplified:', sq6.sample())
-print()
-print(universe.project_out([x]))
-print('sq7 with out constraints involving y and a', sq7.project_out([a, z, x, y])) #drops dims that are passed
+print('sample Polyhedron from sq6:', sq6.sample())
print()
-print('sq1 has {} parameters'.format(sq1.num_parameters()))
+print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y]))
print()
-print('does sq1 constraints involve x?', sq1.involves_dims([x]))
+print('the verticies for s are:', p.vertices())
+
+
+# plotting the intersection of two squares
+square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
+square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
+
+fig = plt.figure()
+plot = fig.add_subplot(1, 1, 1, aspect='equal')
+square1.plot(plot, facecolor='red', alpha=0.3)
+square2.plot(plot, facecolor='blue', alpha=0.3)
+
+squares = Polyhedron(square1 + square2)
+squares.plot(plot, facecolor='blue', alpha=0.3)
+
+pylab.show()