X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/10808766a204fcc854ae30fe471ada80bab1f60f..809c5b59db7b6be224146b8d957453a0f9fb43aa:/examples/nsad2010.py diff --git a/examples/nsad2010.py b/examples/nsad2010.py index 14c984c..3de2ebd 100755 --- a/examples/nsad2010.py +++ b/examples/nsad2010.py @@ -1,53 +1,56 @@ #!/usr/bin/env python3 -from pypol import * - -def affine_derivative_closure(T, x0s): - - xs = [Symbol("{}'".format(x0.name)) for x0 in x0s] - dxs = [Symbol('d{}'.format(x0.name)) for x0 in x0s] - k = Symbol('k') - - for x in T.symbols: - x = Symbol(x) - assert x in x0s + xs - for dx in dxs: - assert dx.name not in T.symbols - assert k.name not in T.symbols - - T0 = T - - T1 = T0 - for i, x0 in enumerate(x0s): - x, dx = xs[i], dxs[i] - T1 &= Eq(dx, x - x0) - - T2 = T1.project_out(T0.symbols) - - T3_eqs = [] - T3_ins = [] - for T2_eq in T2.equalities: - c = T2_eq.constant - T3_eq = T2_eq + (k - 1) * c - T3_eqs.append(T3_eq) - for T2_in in T2.inequalities: - c = T2_in.constant - T3_in = T2_in + (k - 1) * c - T3_ins.append(T3_in) - T3 = Polyhedron(T3_eqs, T3_ins) - T3 &= Ge(k, 0) - - T4 = T3.project_out([k]) - for i, dx in enumerate(dxs): - x0, x = x0s[i], xs[i] - T4 &= Eq(dx, x - x0) - T4 = T4.project_out(dxs) - - return T4 - -i0, j0, i, j = symbols(['i', 'j', "i'", "j'"]) -T = Eq(i, i0 + 2) & Eq(j, j0 + 1) - -print('T =', T) -Tstar = affine_derivative_closure(T, [i0, j0]) -print('T* =', Tstar) +# This is an implementation of the algorithm described in +# +# [ACI10] C. Ancourt, F. Coelho and F. Irigoin, A modular static analysis +# approach to affine loop invariants detection (2010), pp. 3 - 16, NSAD 2010. +# +# to compute the transitive closure of an affine transformer. A refined version +# of this algorithm is implemented in PIPS. + +from linpy import Dummy, Eq, Ge, Polyhedron, symbols + + +class Transformer: + + def __new__(cls, polyhedron, range_symbols, domain_symbols): + self = object().__new__(cls) + self.polyhedron = polyhedron + self.range_symbols = range_symbols + self.domain_symbols = domain_symbols + return self + + @property + def symbols(self): + return self.range_symbols + self.domain_symbols + + def star(self): + delta_symbols = [symbol.asdummy() for symbol in self.range_symbols] + k = Dummy('k') + polyhedron = self.polyhedron + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): + polyhedron &= Eq(dx, xprime - x) + polyhedron = polyhedron.project(self.symbols) + equalities, inequalities = [], [] + for equality in polyhedron.equalities: + equality += (k-1) * equality.constant + equalities.append(equality) + for inequality in polyhedron.inequalities: + inequality += (k-1) * inequality.constant + inequalities.append(inequality) + polyhedron = Polyhedron(equalities, inequalities) & Ge(k, 0) + polyhedron = polyhedron.project([k]) + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): + polyhedron &= Eq(dx, xprime - x) + polyhedron = polyhedron.project(delta_symbols) + return Transformer(polyhedron, self.range_symbols, self.domain_symbols) + + +if __name__ == '__main__': + i0, i, j0, j = symbols('i0 i j0 j') + transformer = Transformer(Eq(i, i0 + 2) & Eq(j, j0 + 1), + [i0, j0], [i, j]) + print('T =', transformer.polyhedron) + print('T* =', transformer.star().polyhedron)