X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/197818714e75c2353ed8b7c9fec653f1212f13ae..ce8dda550018a59520e2d632f10d3fe5650e9d0d:/examples/menger.py diff --git a/examples/menger.py b/examples/menger.py index 064219e..c4413ba 100755 --- a/examples/menger.py +++ b/examples/menger.py @@ -1,21 +1,17 @@ #!/usr/bin/env python3 + +# Plot a Menger sponge. # -# Copyright 2014 MINES ParisTech -# -# This file is part of LinPy. -# -# LinPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# LinPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. +# The construction of a Menger sponge can be described as follows: # -# You should have received a copy of the GNU General Public License -# along with LinPy. If not, see . +# 1. Begin with a cube. +# 2. Divide every face of the cube into 9 squares, like a Rubik's Cube. This +# will sub-divide the cube into 27 smaller cubes. +# 3. Remove the smaller cube in the middle of each face, and remove the smaller +# cube in the very center of the larger cube, leaving 20 smaller cubes. This +# is a level-1 Menger sponge (resembling a Void Cube). +# 4. Repeat steps 2 and 3 for each of the remaining smaller cubes, and continue +# to iterate. import argparse @@ -26,18 +22,21 @@ from math import ceil from matplotlib import pylab from mpl_toolkits.mplot3d import Axes3D -from linpy import * +from linpy import Le, Polyhedron, symbols + x, y, z = symbols('x y z') _x, _y, _z = x.asdummy(), y.asdummy(), z.asdummy() + def translate(domain, *, dx=0, dy=0, dz=0): domain &= Polyhedron([x - _x + dx, y - _y + dy, z - _z + dz]) domain = domain.project([x, y, z]) domain = domain.subs({_x: x, _y: y, _z: z}) return domain + def _menger(domain, size): result = domain result |= translate(domain, dx=0, dy=size, dz=0) @@ -61,6 +60,7 @@ def _menger(domain, size): result |= translate(domain, dx=2*size, dy=2*size, dz=2*size) return result + def menger(domain, count=1, cut=False): size = 1 for i in range(count): @@ -73,9 +73,11 @@ def menger(domain, count=1, cut=False): if __name__ == '__main__': parser = argparse.ArgumentParser( description='Compute a Menger sponge.') - parser.add_argument('-n', '--iterations', type=int, default=1, - help='number of iterations (default: 1)') - parser.add_argument('-c', '--cut', action='store_true', default=False, + parser.add_argument( + '-n', '--iterations', type=int, default=2, + help='number of iterations (default: 2)') + parser.add_argument( + '-c', '--cut', action='store_true', default=False, help='cut the sponge') args = parser.parse_args() cube = Le(0, x) & Le(x, 1) & Le(0, y) & Le(y, 1) & Le(0, z) & Le(z, 1)