X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/1d494bb187b70135df721c13306d7f26fdf33f50..d06ab92943ec2e10a2bd798ca7c1b5cea395bf34:/pypol/linexprs.py?ds=inline diff --git a/pypol/linexprs.py b/pypol/linexprs.py index 0db7edd..9a1ed64 100644 --- a/pypol/linexprs.py +++ b/pypol/linexprs.py @@ -3,13 +3,14 @@ import functools import numbers import re +from collections import OrderedDict, defaultdict from fractions import Fraction, gcd __all__ = [ 'Expression', 'Symbol', 'symbols', - 'Constant', + 'Rational', ] @@ -19,7 +20,7 @@ def _polymorphic(func): if isinstance(right, Expression): return func(left, right) elif isinstance(right, numbers.Rational): - right = Constant(right) + right = Rational(right) return func(left, right) return NotImplemented return wrapper @@ -41,47 +42,45 @@ class Expression: if isinstance(coefficients, str): if constant: raise TypeError('too many arguments') - return cls.fromstring(coefficients) + return Expression.fromstring(coefficients) + if coefficients is None: + return Rational(constant) if isinstance(coefficients, dict): coefficients = coefficients.items() - if coefficients is None: - return Constant(constant) + for symbol, coefficient in coefficients: + if not isinstance(symbol, Symbol): + raise TypeError('symbols must be Symbol instances') coefficients = [(symbol, coefficient) for symbol, coefficient in coefficients if coefficient != 0] if len(coefficients) == 0: - return Constant(constant) - elif len(coefficients) == 1 and constant == 0: + return Rational(constant) + if len(coefficients) == 1 and constant == 0: symbol, coefficient = coefficients[0] if coefficient == 1: - return Symbol(symbol) + return symbol self = object().__new__(cls) - self._coefficients = {} - for symbol, coefficient in coefficients: - if isinstance(symbol, Symbol): - symbol = symbol.name - elif not isinstance(symbol, str): - raise TypeError('symbols must be strings or Symbol instances') - if isinstance(coefficient, Constant): + self._coefficients = OrderedDict() + for symbol, coefficient in sorted(coefficients, + key=lambda item: item[0].name): + if isinstance(coefficient, Rational): coefficient = coefficient.constant if not isinstance(coefficient, numbers.Rational): raise TypeError('coefficients must be rational numbers ' - 'or Constant instances') + 'or Rational instances') self._coefficients[symbol] = coefficient - if isinstance(constant, Constant): + if isinstance(constant, Rational): constant = constant.constant if not isinstance(constant, numbers.Rational): raise TypeError('constant must be a rational number ' - 'or a Constant instance') + 'or a Rational instance') self._constant = constant - self._symbols = tuple(sorted(self._coefficients)) + self._symbols = tuple(self._coefficients) self._dimension = len(self._symbols) return self def coefficient(self, symbol): - if isinstance(symbol, Symbol): - symbol = str(symbol) - elif not isinstance(symbol, str): - raise TypeError('symbol must be a string or a Symbol instance') + if not isinstance(symbol, Symbol): + raise TypeError('symbol must be a Symbol instance') try: return self._coefficients[symbol] except KeyError: @@ -90,8 +89,7 @@ class Expression: __getitem__ = coefficient def coefficients(self): - for symbol in self.symbols: - yield symbol, self.coefficient(symbol) + yield from self._coefficients.items() @property def constant(self): @@ -105,6 +103,9 @@ class Expression: def dimension(self): return self._dimension + def __hash__(self): + return hash((tuple(self._coefficients.items()), self._constant)) + def isconstant(self): return False @@ -112,8 +113,7 @@ class Expression: return False def values(self): - for symbol in self.symbols: - yield self.coefficient(symbol) + yield from self._coefficients.values() yield self.constant def __bool__(self): @@ -127,12 +127,9 @@ class Expression: @_polymorphic def __add__(self, other): - coefficients = dict(self.coefficients()) + coefficients = defaultdict(Rational, self.coefficients()) for symbol, coefficient in other.coefficients(): - if symbol in coefficients: - coefficients[symbol] += coefficient - else: - coefficients[symbol] = coefficient + coefficients[symbol] += coefficient constant = self.constant + other.constant return Expression(coefficients, constant) @@ -140,12 +137,9 @@ class Expression: @_polymorphic def __sub__(self, other): - coefficients = dict(self.coefficients()) + coefficients = defaultdict(Rational, self.coefficients()) for symbol, coefficient in other.coefficients(): - if symbol in coefficients: - coefficients[symbol] -= coefficient - else: - coefficients[symbol] = -coefficient + coefficients[symbol] -= coefficient constant = self.constant - other.constant return Expression(coefficients, constant) @@ -172,9 +166,8 @@ class Expression: if other.isconstant(): coefficients = dict(self.coefficients()) for symbol in coefficients: - coefficients[symbol] = \ - Fraction(coefficients[symbol], other.constant) - constant = Fraction(self.constant, other.constant) + coefficients[symbol] = Rational(coefficients[symbol], other.constant) + constant = Rational(self.constant, other.constant) return Expression(coefficients, constant) if isinstance(other, Expression): raise ValueError('non-linear expression: ' @@ -184,8 +177,7 @@ class Expression: def __rtruediv__(self, other): if isinstance(other, self): if self.isconstant(): - constant = Fraction(other, self.constant) - return Expression(constant=constant) + return Rational(other, self.constant) else: raise ValueError('non-linear expression: ' '{} / {}'.format(other._parenstr(), self._parenstr())) @@ -196,8 +188,8 @@ class Expression: # "normal" equality # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs return isinstance(other, Expression) and \ - self._coefficients == other._coefficients and \ - self.constant == other.constant + self._coefficients == other._coefficients and \ + self.constant == other.constant @_polymorphic def __le__(self, other): @@ -219,14 +211,28 @@ class Expression: from .polyhedra import Gt return Gt(self, other) - def __hash__(self): - return hash((tuple(sorted(self._coefficients.items())), self._constant)) - - def _toint(self): + def scaleint(self): lcm = functools.reduce(lambda a, b: a*b // gcd(a, b), [value.denominator for value in self.values()]) return self * lcm + def subs(self, symbol, expression=None): + if expression is None: + if isinstance(symbol, dict): + symbol = symbol.items() + substitutions = symbol + else: + substitutions = [(symbol, expression)] + result = self + for symbol, expression in substitutions: + coefficients = [(othersymbol, coefficient) + for othersymbol, coefficient in result.coefficients() + if othersymbol != symbol] + coefficient = result.coefficient(symbol) + constant = result.constant + result = Expression(coefficients, constant) + coefficient*expression + return result + @classmethod def _fromast(cls, node): if isinstance(node, ast.Module) and len(node.body) == 1: @@ -236,7 +242,7 @@ class Expression: elif isinstance(node, ast.Name): return Symbol(node.id) elif isinstance(node, ast.Num): - return Constant(node.n) + return Rational(node.n) elif isinstance(node, ast.UnaryOp) and isinstance(node.op, ast.USub): return -cls._fromast(node.operand) elif isinstance(node, ast.BinOp): @@ -252,20 +258,23 @@ class Expression: return left / right raise SyntaxError('invalid syntax') + _RE_NUM_VAR = re.compile(r'(\d+|\))\s*([^\W\d_]\w*|\()') + @classmethod def fromstring(cls, string): - string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', string) + # add implicit multiplication operators, e.g. '5x' -> '5*x' + string = Expression._RE_NUM_VAR.sub(r'\1*\2', string) tree = ast.parse(string, 'eval') return cls._fromast(tree) - def __str__(self): + def __repr__(self): string = '' i = 0 for symbol in self.symbols: coefficient = self.coefficient(symbol) if coefficient == 1: if i == 0: - string += symbol + string += symbol.name else: string += ' + {}'.format(symbol) elif coefficient == -1: @@ -302,30 +311,27 @@ class Expression: else: return '({})'.format(string) - def __repr__(self): - return '{}({!r})'.format(self.__class__.__name__, str(self)) - @classmethod def fromsympy(cls, expr): import sympy - coefficients = {} + coefficients = [] constant = 0 for symbol, coefficient in expr.as_coefficients_dict().items(): coefficient = Fraction(coefficient.p, coefficient.q) if symbol == sympy.S.One: constant = coefficient elif isinstance(symbol, sympy.Symbol): - symbol = symbol.name - coefficients[symbol] = coefficient + symbol = Symbol(symbol.name) + coefficients.append((symbol, coefficient)) else: raise ValueError('non-linear expression: {!r}'.format(expr)) - return cls(coefficients, constant) + return Expression(coefficients, constant) def tosympy(self): import sympy expr = 0 for symbol, coefficient in self.coefficients(): - term = coefficient * sympy.Symbol(symbol) + term = coefficient * sympy.Symbol(symbol.name) expr += term expr += self.constant return expr @@ -333,31 +339,56 @@ class Expression: class Symbol(Expression): - __slots__ = Expression.__slots__ + ( + __slots__ = ( '_name', ) def __new__(cls, name): - if isinstance(name, Symbol): - name = name.name - elif not isinstance(name, str): - raise TypeError('name must be a string or a Symbol instance') - name = name.strip() + if not isinstance(name, str): + raise TypeError('name must be a string') self = object().__new__(cls) - self._coefficients = {name: 1} - self._constant = 0 - self._symbols = tuple(name) - self._name = name - self._dimension = 1 + self._name = name.strip() return self @property def name(self): return self._name + def __hash__(self): + return hash(self._name) + + def coefficient(self, symbol): + if not isinstance(symbol, Symbol): + raise TypeError('symbol must be a Symbol instance') + if symbol == self: + return 1 + else: + return 0 + + def coefficients(self): + yield self, 1 + + @property + def constant(self): + return 0 + + @property + def symbols(self): + return self, + + @property + def dimension(self): + return 1 + def issymbol(self): return True + def values(self): + yield 1 + + def __eq__(self, other): + return isinstance(other, Symbol) and self.name == other.name + @classmethod def _fromast(cls, node): if isinstance(node, ast.Module) and len(node.body) == 1: @@ -368,14 +399,11 @@ class Symbol(Expression): return Symbol(node.id) raise SyntaxError('invalid syntax') - def __repr__(self): - return '{}({!r})'.format(self.__class__.__name__, self._name) - @classmethod def fromsympy(cls, expr): import sympy if isinstance(expr, sympy.Symbol): - return cls(expr.name) + return Symbol(expr.name) else: raise TypeError('expr must be a sympy.Symbol instance') @@ -383,49 +411,67 @@ class Symbol(Expression): def symbols(names): if isinstance(names, str): names = names.replace(',', ' ').split() - return (Symbol(name) for name in names) + return tuple(Symbol(name) for name in names) -class Constant(Expression): +class Rational(Expression): + + __slots__ = ( + '_constant', + ) def __new__(cls, numerator=0, denominator=None): self = object().__new__(cls) - if denominator is None and isinstance(numerator, Constant): + if denominator is None and isinstance(numerator, Rational): self._constant = numerator.constant else: self._constant = Fraction(numerator, denominator) - self._coefficients = {} - self._symbols = () - self._dimension = 0 return self + def __hash__(self): + return hash(self.constant) + + def coefficient(self, symbol): + if not isinstance(symbol, Symbol): + raise TypeError('symbol must be a Symbol instance') + return 0 + + def coefficients(self): + yield from () + + @property + def symbols(self): + return () + + @property + def dimension(self): + return 0 + def isconstant(self): return True + def values(self): + yield self._constant + + @_polymorphic + def __eq__(self, other): + return isinstance(other, Rational) and self.constant == other.constant + def __bool__(self): return self.constant != 0 @classmethod def fromstring(cls, string): - if isinstance(string, str): - return Constant(Fraction(string)) - else: + if not isinstance(string, str): raise TypeError('string must be a string instance') - - def __repr__(self): - if self.constant.denominator == 1: - return '{}({!r})'.format(self.__class__.__name__, - self.constant.numerator) - else: - return '{}({!r}, {!r})'.format(self.__class__.__name__, - self.constant.numerator, self.constant.denominator) + return Rational(Fraction(string)) @classmethod def fromsympy(cls, expr): import sympy if isinstance(expr, sympy.Rational): - return cls(expr.p, expr.q) + return Rational(expr.p, expr.q) elif isinstance(expr, numbers.Rational): - return cls(expr) + return Rational(expr) else: raise TypeError('expr must be a sympy.Rational instance')