X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/2baf863a42cd79849834f7d8ad4d4f428929e3d1..454a26a54cc7ff563ab278567f3bbad9c6ff42bb:/doc/examples.rst?ds=sidebyside diff --git a/doc/examples.rst b/doc/examples.rst index 62a7dfd..3d2626d 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -2,46 +2,56 @@ LinPy Examples ============== Basic Examples -------------- +-------------- + To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares. >>> from linpy import * >>> x, y = symbols('x y') >>> # define the constraints of the polyhedron >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) - >>> print(square1) + >>> square1 And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - + Binary operations and properties examples: - - >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) - >>> #test equality + + >>> # create a polyhedron from a string + >>> square2 = Polyhedron('1 <= x') & Polyhedron('x <= 3') & \ + Polyhedron('1 <= y') & Polyhedron('y <= 3') + >>> #test equality >>> square1 == square2 False - >>> # find the union of two polygons - >>> square1 + square2 - Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) + >>> # compute the union of two polyhedrons + >>> square1 | square2 + Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), \ + And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) >>> # check if square1 and square2 are disjoint >>> square1.disjoint(square2) False - >>> # find the intersection of two polygons + >>> # compute the intersection of two polyhedrons >>> square1 & square2 - And(Eq(y - 2, 0), Eq(x - 2, 0)) - >>> # find the convex union of two polygons + And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0)) + >>> # compute the convex union of two polyhedrons >>> Polyhedron(square1 | sqaure2) - And(Ge(x, 0), Ge(-x + 4, 0), Ge(y, 0), Ge(-y + 4, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) - + And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), \ + Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + Unary operation and properties examples: - + >>> square1.isempty() False + >>> # compute the complement of square1 + >>> ~square1 + Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), \ + Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0))) >>> square1.symbols() (x, y) >>> square1.inequalities (x, -x + 2, y, -y + 2) + >>> # project out the variable x >>> square1.project([x]) And(Ge(-y + 2, 0), Ge(y, 0)) - + Plot Examples ------------- @@ -54,20 +64,49 @@ Plot Examples >>> # define the symbols >>> x, y, z = symbols('x y z') >>> fig = plt.figure() - >>> cham_plot = fig.add_subplot(2, 2, 3, projection='3d') + >>> cham_plot = fig.add_subplot(1, 1, 1, projection='3d', aspect='equal') >>> cham_plot.set_title('Chamfered cube') - >>> cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) - >>> cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75)) + >>> cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & \ + Le(z, 3) & Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & \ + Le(x, 5 - z) & Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & \ + Le(y, 5 - z) & Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) + >>> cham.plot(cham_plot, facecolor='red', alpha=0.75) >>> pylab.show() - .. figure:: images/cube.jpg + .. figure:: images/cham_cube.jpg :align: center - LinPy can also inspect a polygon's vertices and the integer points included in the polygon. +LinPy can also inspect a polygon's vertices and the integer points included in the polygon. >>> diamond = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) >>> diamond.vertices() - [Point({x: Fraction(0, 1), y: Fraction(1, 1)}), Point({x: Fraction(-1, 1), y: Fraction(0, 1)}), Point({x: Fraction(1, 1), y: Fraction(0, 1)}), Point({x: Fraction(0, 1), y: Fraction(-1, 1)})] + [Point({x: Fraction(0, 1), y: Fraction(1, 1)}), \ + Point({x: Fraction(-1, 1), y: Fraction(0, 1)}), \ + Point({x: Fraction(1, 1), y: Fraction(0, 1)}), \ + Point({x: Fraction(0, 1), y: Fraction(-1, 1)})] >>> diamond.points() - [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), Point({x: 0, y: 1}), Point({x: 1, y: 0})] + [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), \ + Point({x: 0, y: 1}), Point({x: 1, y: 0})] + +The user also can pass another plot to the :meth:`plot` method. This can be useful to compare two polyhedrons on the same axis. This example illustrates the union of two squares. + + >>> from linpy import * + >>> import matplotlib.pyplot as plt + >>> from matplotlib import pylab + >>> x, y = symbols('x y') + >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) + >>> square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) + >>> fig = plt.figure() + >>> plot = fig.add_subplot(1, 1, 1, aspect='equal') + >>> square1.plot(plot, facecolor='red', alpha=0.3) + >>> square2.plot(plot, facecolor='blue', alpha=0.3) + >>> squares = Polyhedron(square1 + square2) + >>> squares.plot(plot, facecolor='blue', alpha=0.3) + >>> pylab.show() + + .. figure:: images/union.jpg + :align: center + + +