X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/35c965895771a3df79744ae54f1eda91f0b62862..88b274d96fde76a3fb7f41c7c2359c8dc8987cb8:/doc/examples.rst diff --git a/doc/examples.rst b/doc/examples.rst index 1884f49..ee254bc 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -2,7 +2,8 @@ LinPy Examples ============== Basic Examples -------------- +-------------- + To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares. >>> from linpy import * @@ -11,16 +12,17 @@ Basic Examples >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) >>> square1 And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - + Binary operations and properties examples: - + >>> square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) - >>> #test equality + >>> #test equality >>> square1 == square2 False >>> # compute the union of two polyhedrons >>> square1 | square2 - Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) + Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), \ + And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) >>> # check if square1 and square2 are disjoint >>> square1.disjoint(square2) False @@ -29,10 +31,11 @@ Basic Examples And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0)) >>> # compute the convex union of two polyhedrons >>> Polyhedron(square1 | sqaure2) - And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) - + And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), \ + Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + Unary operation and properties examples: - + >>> square1.isempty() False >>> square1.symbols() @@ -42,7 +45,7 @@ Basic Examples >>> # project out the variable x >>> square1.project([x]) And(Ge(-y + 2, 0), Ge(y, 0)) - + Plot Examples ------------- @@ -78,9 +81,9 @@ LinPy can also inspect a polygon's vertices and the integer points included in t >>> diamond.points() [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), \ Point({x: 0, y: 1}), Point({x: 1, y: 0})] - + The user also can pass another plot to the :meth:`plot` method. This can be useful to compare two polyhedrons on the same axis. This example illustrates the union of two squares. - + >>> from linpy import * >>> import matplotlib.pyplot as plt >>> from matplotlib import pylab @@ -93,11 +96,11 @@ The user also can pass another plot to the :meth:`plot` method. This can be usef >>> square2.plot(plot, facecolor='blue', alpha=0.3) >>> squares = Polyhedron(square1 + square2) >>> squares.plot(plot, facecolor='blue', alpha=0.3) - >>> pylab.show() - + >>> pylab.show() + .. figure:: images/union.jpg - :align: center - - - + :align: center + + +