X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/6a1d02bd5c59e77c8333ccb4b54d6d2025c493ca..a3be1b6748e49fa15003b073c35a92e7ec818ebd:/pypol/linear.py diff --git a/pypol/linear.py b/pypol/linear.py index 348294c..8e96f35 100644 --- a/pypol/linear.py +++ b/pypol/linear.py @@ -4,8 +4,8 @@ import numbers from fractions import Fraction, gcd -from . import isl, islhelper -from .isl import libisl, Context, BasicSet +from . import isl +from .isl import libisl __all__ = [ @@ -42,6 +42,9 @@ def _polymorphic_operator(func): return wrapper +_main_ctx = isl.Context() + + class Expression: """ This class implements linear expressions. @@ -498,8 +501,7 @@ class Polyhedron: if symbols is None: symbols = self.symbols() num_coefficients = len(symbols) - ctx = Context() - space = libisl.isl_space_set_alloc(ctx, 0, num_coefficients) + space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients) bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space)) ls = libisl.isl_local_space_from_space(space) ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls)) @@ -514,7 +516,7 @@ class Polyhedron: for eq in coeff_eq: num = coeff_eq.get(eq) iden = symbols.index(eq) - ceq = libisl.isl_constraint_set_coefficient_si(ceq, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set + ceq = libisl.isl_constraint_set_coefficient_si(ceq, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set bset = libisl.isl_basic_set_add_constraint(bset, ceq) if list(self.inequalities): #check if any inequalities exist for ineq in self.inequalities: @@ -525,9 +527,9 @@ class Polyhedron: for ineq in coeff_in: num = coeff_in.get(ineq) iden = symbols.index(ineq) - cin = libisl.isl_constraint_set_coefficient_si(cin, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set + cin = libisl.isl_constraint_set_coefficient_si(cin, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set bset = libisl.isl_basic_set_add_constraint(bset, cin) - bset = BasicSet(bset) + bset = isl.BasicSet(bset) return bset def from_isl(self, bset):