X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/98edd00eb4b05e85f7cb1b85cff2f4d733909c57..5d474779438016e3af4bfd13a4200a01ca9ec3c7:/doc/reference.rst?ds=inline diff --git a/doc/reference.rst b/doc/reference.rst index 64c37c6..e6f291d 100644 --- a/doc/reference.rst +++ b/doc/reference.rst @@ -5,6 +5,8 @@ Module Reference ================ +.. _reference_symbols: + Symbols ------- @@ -70,6 +72,8 @@ This is achieved using ``Dummy('x')``. True +.. _reference_linexprs: + Linear Expressions ------------------ @@ -80,12 +84,12 @@ Linear expressions are generally built using overloaded operators. For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :class:`LinExpr`. .. class:: LinExpr(coefficients=None, constant=0) - LinExpr(string) + LinExpr(string) Return a linear expression from a dictionary or a sequence, that maps symbols to their coefficients, and a constant term. The coefficients and the constant term must be rational numbers. - For example, the linear expression ``x + 2y + 1`` can be constructed using one of the following instructions: + For example, the linear expression ``x + 2*y + 1`` can be constructed using one of the following instructions: >>> x, y = symbols('x y') >>> LinExpr({x: 1, y: 2}, 1) @@ -98,7 +102,7 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl Alternatively, linear expressions can be constructed from a string: - >>> LinExpr('x + 2*y + 1') + >>> LinExpr('x + 2y + 1') :class:`LinExpr` instances are hashable, and should be treated as immutable. @@ -173,7 +177,7 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl >>> x, y = symbols('x y') >>> x < y - Le(x - y + 1, 0) + x + 1 <= y .. method:: scaleint() @@ -216,7 +220,7 @@ Apart from :mod:`Symbol`, a particular case of linear expressions are rational v They are implemented by the :class:`Rational` class, that inherits from both :class:`LinExpr` and :class:`fractions.Fraction` classes. .. class:: Rational(numerator, denominator=1) - Rational(string) + Rational(string) The first version requires that the *numerator* and *denominator* are instances of :class:`numbers.Rational` and returns a new :class:`Rational` instance with the value ``numerator/denominator``. If the denominator is ``0``, it raises a :exc:`ZeroDivisionError`. @@ -230,6 +234,8 @@ They are implemented by the :class:`Rational` class, that inherits from both :cl See the documentation of :class:`fractions.Fraction` for more information and examples. +.. _reference_polyhedra: + Polyhedra --------- @@ -237,14 +243,16 @@ A *convex polyhedron* (or simply "polyhedron") is the space defined by a system This space can be unbounded. .. class:: Polyhedron(equalities, inequalities) - Polyhedron(string) - Polyhedron(geometric object) + Polyhedron(string) + Polyhedron(geometric object) Return a polyhedron from two sequences of linear expressions: *equalities* is a list of expressions equal to ``0``, and *inequalities* is a list of expressions greater or equal to ``0``. For example, the polyhedron ``0 <= x <= 2, 0 <= y <= 2`` can be constructed with: >>> x, y = symbols('x y') >>> square = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square + And(0 <= x, x <= 2, 0 <= y, y <= 2) It may be easier to use comparison operators :meth:`LinExpr.__lt__`, :meth:`LinExpr.__le__`, :meth:`LinExpr.__ge__`, :meth:`LinExpr.__gt__`, or functions :func:`Lt`, :func:`Le`, :func:`Eq`, :func:`Ge` and :func:`Gt`, using one of the following instructions: @@ -262,6 +270,7 @@ This space can be unbounded. >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') >>> Polyhedron(square | square2) + And(x <= 4, 0 <= x, y <= 4, 0 <= y, x <= y + 2, y <= x + 2) A polyhedron is a :class:`Domain` instance, and, therefore, inherits the functionalities of this class. It is also a :class:`GeometricObject` instance. @@ -305,6 +314,8 @@ This space can be unbounded. The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty. +.. _reference_domains: + Domains ------- @@ -312,14 +323,16 @@ A *domain* is a union of polyhedra. Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations. .. class:: Domain(*polyhedra) - Domain(string) - Domain(geometric object) + Domain(string) + Domain(geometric object) Return a domain from a sequence of polyhedra. >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> dom = Domain([square, square2]) + >>> dom = Domain(square, square2) + >>> dom + Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 4, 2 <= x, y <= 4, 2 <= y)) It is also possible to build domains from polyhedra using arithmetic operators :meth:`Domain.__and__`, :meth:`Domain.__or__` or functions :func:`And` and :func:`Or`, using one of the following instructions: @@ -487,6 +500,8 @@ Unlike polyhedra, domains allow exact computation of union, subtraction and comp Convert the domain to a sympy expression. +.. _reference_operators: + Comparison and Logic Operators ------------------------------ @@ -532,6 +547,8 @@ The following functions combine :class:`Polyhedron` or :class:`Domain` instances Create the complementary domain of the domain given in argument. +.. _reference_geometry: + Geometric Objects -----------------