X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/a13b139496c50e81964197336f51303022ab4e3b..d1c9ff71cf2d59fa6c56665d1569d16d3f1428a6:/doc/tutorial.rst diff --git a/doc/tutorial.rst b/doc/tutorial.rst index 9b55a03..67aecd6 100644 --- a/doc/tutorial.rst +++ b/doc/tutorial.rst @@ -10,8 +10,8 @@ For a comprehensive description of its functionalities, please consult the :ref: .. _tutorial_polyhedra: -Polyhedra ---------- +Z-Polyhedra +----------- The following example shows how we can manipulate polyhedra using LinPy. Let us define two square polyhedra, corresponding to the sets ``square1 = {(x, y) | 0 <= x <= 2, 0 <= y <= 2}`` and ``square2 = {(x, y) | 2 <= x <= 4, 2 <= y <= 4}``. @@ -24,31 +24,32 @@ Then, we can build the :class:`Polyhedron` object ``square1`` from its constrain >>> square1 = Le(0, x, 2) & Le(0, y, 2) >>> square1 -And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) +And(0 <= x, x <= 2, 0 <= y, y <= 2) LinPy provides comparison functions :func:`Lt`, :func:`Le`, :func:`Eq`, :func:`Ne`, :func:`Ge` and :func:`Gt` to build constraints, and logical operators :func:`And`, :func:`Or`, :func:`Not` to combine them. Alternatively, a polyhedron can be built from a string: >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3') >>> square2 -And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)) +And(1 <= x, x <= 3, 1 <= y, y <= 3) The usual polyhedral operations are available, including intersection: ->>> inter = square1.intersection(square2) +>>> inter = square1.intersection(square2) # or square1 & square2 >>> inter -And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0)) +And(1 <= x, x <= 2, 1 <= y, y <= 2) convex union: >>> hull = square1.convex_union(square2) >>> hull -And(Ge(x, 0), Ge(y, 0), Ge(-x + y + 2, 0), Ge(x - y + 2, 0), Ge(-x + 3, 0), Ge(-y + 3, 0)) +And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3) and projection: ->>> square1.project([y]) -And(Ge(x, 0), Ge(-x + 2, 0)) +>>> proj = square1.project([y]) +>>> proj +And(0 <= x, x <= 2) Equality and inclusion tests are also provided. Special values :data:`Empty` and :data:`Universe` represent the empty and universe polyhedra. @@ -68,19 +69,19 @@ LinPy is also able to manipulate polyhedral *domains*, that is, unions of polyhe An example of domain is the set union (as opposed to convex union) of polyhedra ``square1`` and ``square2``. The result is a :class:`Domain` object. ->>> union = square1 | square2 +>>> union = square1.union(square2) # or square1 | square2 >>> union -Or(And(Ge(-x + 2, 0), Ge(x, 0), Ge(-y + 2, 0), Ge(y, 0)), And(Ge(-x + 3, 0), Ge(x - 1, 0), Ge(-y + 3, 0), Ge(y - 1, 0))) +Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), And(x <= 3, 1 <= x, y <= 3, 1 <= y)) >>> union <= hull True Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations. ->>> diff = square1 - square2 +>>> diff = square1.difference(square2) # or square1 - square2 >>> diff -Or(And(Eq(x, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Eq(y, 0), Ge(x - 1, 0), Ge(-x + 2, 0))) +Or(And(x == 0, 0 <= y, y <= 2), And(y == 0, 1 <= x, x <= 2)) >>> ~square1 -Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0))) +Or(x + 1 <= 0, 3 <= x, And(0 <= x, x <= 2, y + 1 <= 0), And(0 <= x, x <= 2, 3 <= y)) .. _tutorial_plot: