X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/b4bd8f7aa081b9296c6089310d286c3b7359a5cc..2b13a146860ac116ce0388d8f7551044c09c55f7:/linpy/polyhedra.py?ds=sidebyside diff --git a/linpy/polyhedra.py b/linpy/polyhedra.py index a720b74..c05432a 100644 --- a/linpy/polyhedra.py +++ b/linpy/polyhedra.py @@ -37,8 +37,9 @@ __all__ = [ class Polyhedron(Domain): """ A convex polyhedron (or simply "polyhedron") is the space defined by a - system of linear equalities and inequalities. This space can be - unbounded. + system of linear equalities and inequalities. This space can be unbounded. A + Z-polyhedron (simply called "polyhedron" in LinPy) is the set of integer + points in a convex polyhedron. """ __slots__ = ( @@ -56,28 +57,31 @@ class Polyhedron(Domain): 0 <= x <= 2, 0 <= y <= 2 can be constructed with: >>> x, y = symbols('x y') - >>> square = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 + And(0 <= x, x <= 2, 0 <= y, y <= 2) It may be easier to use comparison operators LinExpr.__lt__(), LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(), Le(), Eq(), Ge() and Gt(), using one of the following instructions: >>> x, y = symbols('x y') - >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) - >>> square = Le(0, x, 2) & Le(0, y, 2) + >>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) + >>> square1 = Le(0, x, 2) & Le(0, y, 2) It is also possible to build a polyhedron from a string. - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') Finally, a polyhedron can be constructed from a GeometricObject instance, calling the GeometricObject.aspolyedron() method. This way, it is possible to compute the polyhedral hull of a Domain instance, i.e., the convex hull of two polyhedra: - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') - >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> Polyhedron(square | square2) + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3') + >>> Polyhedron(square1 | square2) + And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3) """ if isinstance(equalities, str): if inequalities is not None: @@ -281,22 +285,38 @@ class Polyhedron(Domain): def __repr__(self): strings = [] for equality in self.equalities: - strings.append('Eq({}, 0)'.format(equality)) + left, right, swap = 0, 0, False + for i, (symbol, coefficient) in enumerate(equality.coefficients()): + if coefficient > 0: + left += coefficient * symbol + else: + right -= coefficient * symbol + if i == 0: + swap = True + if equality.constant > 0: + left += equality.constant + else: + right -= equality.constant + if swap: + left, right = right, left + strings.append('{} == {}'.format(left, right)) for inequality in self.inequalities: - strings.append('Ge({}, 0)'.format(inequality)) + left, right = 0, 0 + for symbol, coefficient in inequality.coefficients(): + if coefficient < 0: + left -= coefficient * symbol + else: + right += coefficient * symbol + if inequality.constant < 0: + left -= inequality.constant + else: + right += inequality.constant + strings.append('{} <= {}'.format(left, right)) if len(strings) == 1: return strings[0] else: return 'And({})'.format(', '.join(strings)) - def _repr_latex_(self): - strings = [] - for equality in self.equalities: - strings.append('{} = 0'.format(equality._repr_latex_().strip('$'))) - for inequality in self.inequalities: - strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$'))) - return '$${}$$'.format(' \\wedge '.join(strings)) - @classmethod def fromsympy(cls, expr): domain = Domain.fromsympy(expr) @@ -335,9 +355,6 @@ class EmptyType(Polyhedron): def __repr__(self): return 'Empty' - def _repr_latex_(self): - return '$$\\emptyset$$' - Empty = EmptyType() @@ -358,9 +375,6 @@ class UniverseType(Polyhedron): def __repr__(self): return 'Universe' - def _repr_latex_(self): - return '$$\\Omega$$' - Universe = UniverseType()