X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/ba567519bac2c8a170defbc2275088f31cf8ccdd..51e97eade63b2f4c7b500feb503436cc4a886e59:/examples/diamonds.py?ds=inline diff --git a/examples/diamonds.py b/examples/diamonds.py index 1bbfc2d..56af7e3 100755 --- a/examples/diamonds.py +++ b/examples/diamonds.py @@ -1,5 +1,22 @@ #!/usr/bin/env python3 +""" + This file is part of Linpy. + + Linpy is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Linpy is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Linpy. If not, see . +""" + import matplotlib.pyplot as plt from matplotlib import pylab @@ -9,14 +26,14 @@ from pypol import * x, y, z = symbols('x y z') -fig = plt.figure() +fig = plt.figure(facecolor='white') -diam_plot = fig.add_subplot(2, 2, 1) +diam_plot = fig.add_subplot(2, 2, 1, aspect='equal') diam_plot.set_title('Diamond') diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) diam.plot(diam_plot, fill=True, edgecolor='red', facecolor='yellow') -cham_plot = fig.add_subplot(2, 2, 2, projection='3d') +cham_plot = fig.add_subplot(2, 2, 2, projection='3d', aspect='equal') cham_plot.set_title('Chamfered cube') cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \ Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \ @@ -24,7 +41,7 @@ cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \ Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75)) -rhom_plot = fig.add_subplot(2, 2, 3, projection='3d') +rhom_plot = fig.add_subplot(2, 2, 3, projection='3d', aspect='equal') rhom_plot.set_title('Rhombicuboctahedron') rhom = cham & \ Le(x + y + z, 7) & Ge(-2, -x - y - z) & \ @@ -33,7 +50,7 @@ rhom = cham & \ Le(-1, -x + y + z) & Le(-x + y + z, 4) rhom.plot(rhom_plot, facecolors=(0, 1, 0, 0.75)) -cubo_plot = fig.add_subplot(2, 2, 4, projection='3d') +cubo_plot = fig.add_subplot(2, 2, 4, projection='3d', aspect='equal') cubo_plot.set_title('Truncated cuboctahedron') cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \ Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \ @@ -44,4 +61,7 @@ cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \ Le(-2, -x + y + z) & Le(-x + y + z, 7) & \ Le(-2, x + y - z) & Le(x + y - z, 7) cubo.plot(cubo_plot, facecolors=(0, 0, 1, 0.75)) + pylab.show() + +# Copyright 2014 MINES ParisTech