X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/d9ce6feb2d36e40e83326744f1d4ff3890d1874f..2baf863a42cd79849834f7d8ad4d4f428929e3d1:/doc/examples.rst?ds=sidebyside diff --git a/doc/examples.rst b/doc/examples.rst index 7a390d3..62a7dfd 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -1,44 +1,56 @@ -Linpy Examples +LinPy Examples ============== -Creating a Polyhedron ------------------ - To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints for the polyhedron. This example creates a square. - - >>> from pypol import * +Basic Examples +------------- + To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares. + + >>> from linpy import * >>> x, y = symbols('x y') >>> # define the constraints of the polyhedron >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) >>> print(square1) And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - -Urnary Operations ------------------ + + Binary operations and properties examples: + + >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) + >>> #test equality + >>> square1 == square2 + False + >>> # find the union of two polygons + >>> square1 + square2 + Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) + >>> # check if square1 and square2 are disjoint + >>> square1.disjoint(square2) + False + >>> # find the intersection of two polygons + >>> square1 & square2 + And(Eq(y - 2, 0), Eq(x - 2, 0)) + >>> # find the convex union of two polygons + >>> Polyhedron(square1 | sqaure2) + And(Ge(x, 0), Ge(-x + 4, 0), Ge(y, 0), Ge(-y + 4, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + + Unary operation and properties examples: >>> square1.isempty() False - >>> square1.isbounded() - True + >>> square1.symbols() + (x, y) + >>> square1.inequalities + (x, -x + 2, y, -y + 2) + >>> square1.project([x]) + And(Ge(-y + 2, 0), Ge(y, 0)) -Binary Operations ------------------ - - >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) - >>> square1 + square2 - Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) - >>> # check if square1 and square2 are disjoint - >>> square1.disjoint(square2) - False - Plot Examples -------------- - - Linpy uses matplotlib plotting library to plot 2D and 3D polygons. The user has the option to pass subplots to the :meth:`plot` method. This can be a useful tool to compare polygons. Also, key word arguments can be passed such as color and the degree of transparency of a polygon. - +------------- + + LinPy uses matplotlib plotting library to plot 2D and 3D polygons. The user has the option to pass subplots to the :meth:`plot` method. This can be a useful tool to compare polygons. Also, key word arguments can be passed such as color and the degree of transparency of a polygon. + >>> import matplotlib.pyplot as plt >>> from matplotlib import pylab >>> from mpl_toolkits.mplot3d import Axes3D - >>> from pypol import * + >>> from linpy import * >>> # define the symbols >>> x, y, z = symbols('x y z') >>> fig = plt.figure() @@ -47,21 +59,15 @@ Plot Examples >>> cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) >>> cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75)) >>> pylab.show() - + .. figure:: images/cube.jpg :align: center - - The user can also inspect a polygon's vertices and the integer points included in the polygon. - + + LinPy can also inspect a polygon's vertices and the integer points included in the polygon. + >>> diamond = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) >>> diamond.vertices() [Point({x: Fraction(0, 1), y: Fraction(1, 1)}), Point({x: Fraction(-1, 1), y: Fraction(0, 1)}), Point({x: Fraction(1, 1), y: Fraction(0, 1)}), Point({x: Fraction(0, 1), y: Fraction(-1, 1)})] >>> diamond.points() [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), Point({x: 0, y: 1}), Point({x: 1, y: 0})] - - - - - - - +