X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/ddefc755b0637b08a0a2788be3a0678b52942f5b..8254671f212705c1ea79353ee341c0363bd7cd10:/linpy/polyhedra.py diff --git a/linpy/polyhedra.py b/linpy/polyhedra.py index bfc7efe..1ccbe9c 100644 --- a/linpy/polyhedra.py +++ b/linpy/polyhedra.py @@ -37,8 +37,9 @@ __all__ = [ class Polyhedron(Domain): """ A convex polyhedron (or simply "polyhedron") is the space defined by a - system of linear equalities and inequalities. This space can be - unbounded. + system of linear equalities and inequalities. This space can be unbounded. A + Z-polyhedron (simply called "polyhedron" in LinPy) is the set of integer + points in a convex polyhedron. """ __slots__ = ( @@ -56,28 +57,31 @@ class Polyhedron(Domain): 0 <= x <= 2, 0 <= y <= 2 can be constructed with: >>> x, y = symbols('x y') - >>> square = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 + And(0 <= x, x <= 2, 0 <= y, y <= 2) It may be easier to use comparison operators LinExpr.__lt__(), LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(), Le(), Eq(), Ge() and Gt(), using one of the following instructions: >>> x, y = symbols('x y') - >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) - >>> square = Le(0, x, 2) & Le(0, y, 2) + >>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) + >>> square1 = Le(0, x, 2) & Le(0, y, 2) It is also possible to build a polyhedron from a string. - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') Finally, a polyhedron can be constructed from a GeometricObject instance, calling the GeometricObject.aspolyedron() method. This way, it is possible to compute the polyhedral hull of a Domain instance, i.e., the convex hull of two polyhedra: - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') - >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> Polyhedron(square | square2) + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3') + >>> Polyhedron(square1 | square2) + And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3) """ if isinstance(equalities, str): if inequalities is not None: @@ -313,19 +317,11 @@ class Polyhedron(Domain): else: return 'And({})'.format(', '.join(strings)) - def _repr_latex_(self): - strings = [] - for equality in self.equalities: - strings.append('{} = 0'.format(equality._repr_latex_().strip('$'))) - for inequality in self.inequalities: - strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$'))) - return '$${}$$'.format(' \\wedge '.join(strings)) - @classmethod - def fromsympy(cls, expr): - domain = Domain.fromsympy(expr) + def fromsympy(cls, expression): + domain = Domain.fromsympy(expression) if not isinstance(domain, Polyhedron): - raise ValueError('non-polyhedral expression: {!r}'.format(expr)) + raise ValueError('non-polyhedral expression: {!r}'.format(expression)) return domain def tosympy(self): @@ -359,9 +355,6 @@ class EmptyType(Polyhedron): def __repr__(self): return 'Empty' - def _repr_latex_(self): - return '$$\\emptyset$$' - Empty = EmptyType() @@ -382,83 +375,80 @@ class UniverseType(Polyhedron): def __repr__(self): return 'Universe' - def _repr_latex_(self): - return '$$\\Omega$$' - Universe = UniverseType() def _pseudoconstructor(func): @functools.wraps(func) - def wrapper(expr1, expr2, *exprs): - exprs = (expr1, expr2) + exprs - for expr in exprs: - if not isinstance(expr, LinExpr): - if isinstance(expr, numbers.Rational): - expr = Rational(expr) + def wrapper(expression1, expression2, *expressions): + expressions = (expression1, expression2) + expressions + for expression in expressions: + if not isinstance(expression, LinExpr): + if isinstance(expression, numbers.Rational): + expression = Rational(expression) else: raise TypeError('arguments must be rational numbers ' 'or linear expressions') - return func(*exprs) + return func(*expressions) return wrapper @_pseudoconstructor -def Lt(*exprs): +def Lt(*expressions): """ Create the polyhedron with constraints expr1 < expr2 < expr3 ... """ inequalities = [] - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): inequalities.append(right - left - 1) return Polyhedron([], inequalities) @_pseudoconstructor -def Le(*exprs): +def Le(*expressions): """ Create the polyhedron with constraints expr1 <= expr2 <= expr3 ... """ inequalities = [] - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): inequalities.append(right - left) return Polyhedron([], inequalities) @_pseudoconstructor -def Eq(*exprs): +def Eq(*expressions): """ Create the polyhedron with constraints expr1 == expr2 == expr3 ... """ equalities = [] - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): equalities.append(left - right) return Polyhedron(equalities, []) @_pseudoconstructor -def Ne(*exprs): +def Ne(*expressions): """ Create the domain such that expr1 != expr2 != expr3 ... The result is a Domain object, not a Polyhedron. """ domain = Universe - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): domain &= ~Eq(left, right) return domain @_pseudoconstructor -def Ge(*exprs): +def Ge(*expressions): """ Create the polyhedron with constraints expr1 >= expr2 >= expr3 ... """ inequalities = [] - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): inequalities.append(left - right) return Polyhedron([], inequalities) @_pseudoconstructor -def Gt(*exprs): +def Gt(*expressions): """ Create the polyhedron with constraints expr1 > expr2 > expr3 ... """ inequalities = [] - for left, right in zip(exprs, exprs[1:]): + for left, right in zip(expressions, expressions[1:]): inequalities.append(left - right - 1) return Polyhedron([], inequalities)