X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/f03bfa8b26b45b0ba2b47c6eadafa7787200a9c9..33d593f633df2de00010d668e3ef17f1b6152ac9:/linpy/polyhedra.py diff --git a/linpy/polyhedra.py b/linpy/polyhedra.py index 50af053..1ccbe9c 100644 --- a/linpy/polyhedra.py +++ b/linpy/polyhedra.py @@ -37,8 +37,9 @@ __all__ = [ class Polyhedron(Domain): """ A convex polyhedron (or simply "polyhedron") is the space defined by a - system of linear equalities and inequalities. This space can be - unbounded. + system of linear equalities and inequalities. This space can be unbounded. A + Z-polyhedron (simply called "polyhedron" in LinPy) is the set of integer + points in a convex polyhedron. """ __slots__ = ( @@ -56,28 +57,31 @@ class Polyhedron(Domain): 0 <= x <= 2, 0 <= y <= 2 can be constructed with: >>> x, y = symbols('x y') - >>> square = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 = Polyhedron([], [x, 2 - x, y, 2 - y]) + >>> square1 + And(0 <= x, x <= 2, 0 <= y, y <= 2) It may be easier to use comparison operators LinExpr.__lt__(), LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(), Le(), Eq(), Ge() and Gt(), using one of the following instructions: >>> x, y = symbols('x y') - >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) - >>> square = Le(0, x, 2) & Le(0, y, 2) + >>> square1 = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2) + >>> square1 = Le(0, x, 2) & Le(0, y, 2) It is also possible to build a polyhedron from a string. - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') Finally, a polyhedron can be constructed from a GeometricObject instance, calling the GeometricObject.aspolyedron() method. This way, it is possible to compute the polyhedral hull of a Domain instance, i.e., the convex hull of two polyhedra: - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') - >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> Polyhedron(square | square2) + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3') + >>> Polyhedron(square1 | square2) + And(0 <= x, 0 <= y, x <= y + 2, y <= x + 2, x <= 3, y <= 3) """ if isinstance(equalities, str): if inequalities is not None: @@ -173,7 +177,11 @@ class Polyhedron(Domain): for inequality in self.inequalities] return Polyhedron(equalities, inequalities) - def _asinequalities(self): + def asinequalities(self): + """ + Express the polyhedron using inequalities, given as a list of + expressions greater or equal to 0. + """ inequalities = list(self.equalities) inequalities.extend([-expression for expression in self.equalities]) inequalities.extend(self.inequalities) @@ -188,8 +196,8 @@ class Polyhedron(Domain): """ if not isinstance(other, Polyhedron): raise TypeError('argument must be a Polyhedron instance') - inequalities1 = self._asinequalities() - inequalities2 = other._asinequalities() + inequalities1 = self.asinequalities() + inequalities2 = other.asinequalities() inequalities = [] for inequality1 in inequalities1: if other <= Polyhedron(inequalities=[inequality1]): @@ -277,27 +285,43 @@ class Polyhedron(Domain): def __repr__(self): strings = [] for equality in self.equalities: - strings.append('Eq({}, 0)'.format(equality)) + left, right, swap = 0, 0, False + for i, (symbol, coefficient) in enumerate(equality.coefficients()): + if coefficient > 0: + left += coefficient * symbol + else: + right -= coefficient * symbol + if i == 0: + swap = True + if equality.constant > 0: + left += equality.constant + else: + right -= equality.constant + if swap: + left, right = right, left + strings.append('{} == {}'.format(left, right)) for inequality in self.inequalities: - strings.append('Ge({}, 0)'.format(inequality)) + left, right = 0, 0 + for symbol, coefficient in inequality.coefficients(): + if coefficient < 0: + left -= coefficient * symbol + else: + right += coefficient * symbol + if inequality.constant < 0: + left -= inequality.constant + else: + right += inequality.constant + strings.append('{} <= {}'.format(left, right)) if len(strings) == 1: return strings[0] else: return 'And({})'.format(', '.join(strings)) - def _repr_latex_(self): - strings = [] - for equality in self.equalities: - strings.append('{} = 0'.format(equality._repr_latex_().strip('$'))) - for inequality in self.inequalities: - strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$'))) - return '$${}$$'.format(' \\wedge '.join(strings)) - @classmethod - def fromsympy(cls, expr): - domain = Domain.fromsympy(expr) + def fromsympy(cls, expression): + domain = Domain.fromsympy(expression) if not isinstance(domain, Polyhedron): - raise ValueError('non-polyhedral expression: {!r}'.format(expr)) + raise ValueError('non-polyhedral expression: {!r}'.format(expression)) return domain def tosympy(self): @@ -331,9 +355,6 @@ class EmptyType(Polyhedron): def __repr__(self): return 'Empty' - def _repr_latex_(self): - return '$$\\emptyset$$' - Empty = EmptyType() @@ -354,69 +375,80 @@ class UniverseType(Polyhedron): def __repr__(self): return 'Universe' - def _repr_latex_(self): - return '$$\\Omega$$' - Universe = UniverseType() -def _polymorphic(func): +def _pseudoconstructor(func): @functools.wraps(func) - def wrapper(left, right): - if not isinstance(left, LinExpr): - if isinstance(left, numbers.Rational): - left = Rational(left) - else: - raise TypeError('left must be a a rational number ' - 'or a linear expression') - if not isinstance(right, LinExpr): - if isinstance(right, numbers.Rational): - right = Rational(right) - else: - raise TypeError('right must be a a rational number ' - 'or a linear expression') - return func(left, right) + def wrapper(expression1, expression2, *expressions): + expressions = (expression1, expression2) + expressions + for expression in expressions: + if not isinstance(expression, LinExpr): + if isinstance(expression, numbers.Rational): + expression = Rational(expression) + else: + raise TypeError('arguments must be rational numbers ' + 'or linear expressions') + return func(*expressions) return wrapper -@_polymorphic -def Lt(left, right): +@_pseudoconstructor +def Lt(*expressions): """ Create the polyhedron with constraints expr1 < expr2 < expr3 ... """ - return Polyhedron([], [right - left - 1]) + inequalities = [] + for left, right in zip(expressions, expressions[1:]): + inequalities.append(right - left - 1) + return Polyhedron([], inequalities) -@_polymorphic -def Le(left, right): +@_pseudoconstructor +def Le(*expressions): """ Create the polyhedron with constraints expr1 <= expr2 <= expr3 ... """ - return Polyhedron([], [right - left]) + inequalities = [] + for left, right in zip(expressions, expressions[1:]): + inequalities.append(right - left) + return Polyhedron([], inequalities) -@_polymorphic -def Eq(left, right): +@_pseudoconstructor +def Eq(*expressions): """ Create the polyhedron with constraints expr1 == expr2 == expr3 ... """ - return Polyhedron([left - right], []) + equalities = [] + for left, right in zip(expressions, expressions[1:]): + equalities.append(left - right) + return Polyhedron(equalities, []) -@_polymorphic -def Ne(left, right): +@_pseudoconstructor +def Ne(*expressions): """ Create the domain such that expr1 != expr2 != expr3 ... The result is a - Domain, not a Polyhedron. + Domain object, not a Polyhedron. """ - return ~Eq(left, right) + domain = Universe + for left, right in zip(expressions, expressions[1:]): + domain &= ~Eq(left, right) + return domain -@_polymorphic -def Ge(left, right): +@_pseudoconstructor +def Ge(*expressions): """ Create the polyhedron with constraints expr1 >= expr2 >= expr3 ... """ - return Polyhedron([], [left - right]) + inequalities = [] + for left, right in zip(expressions, expressions[1:]): + inequalities.append(left - right) + return Polyhedron([], inequalities) -@_polymorphic -def Gt(left, right): +@_pseudoconstructor +def Gt(*expressions): """ Create the polyhedron with constraints expr1 > expr2 > expr3 ... """ - return Polyhedron([], [left - right - 1]) + inequalities = [] + for left, right in zip(expressions, expressions[1:]): + inequalities.append(left - right - 1) + return Polyhedron([], inequalities)