X-Git-Url: https://svn.cri.ensmp.fr/git/linpy.git/blobdiff_plain/fb070deb31a82b789e1be4ffc5dfa64b4b7a9e36..9cb18415eee0e4eb2a5126da5ba7bd916aa85dd1:/examples/squares.py?ds=sidebyside diff --git a/examples/squares.py b/examples/squares.py index 0df8b4b..98e2ca8 100755 --- a/examples/squares.py +++ b/examples/squares.py @@ -1,6 +1,8 @@ #!/usr/bin/env python3 -from pypol import * +from linpy import * +import matplotlib.pyplot as plt +from matplotlib import pylab a, x, y, z = symbols('a x y z') @@ -9,8 +11,10 @@ sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2) sq5 = Le(1, x) & Le(x, 2) & Le(1, y) -sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3) +sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 3) sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3) +p = Le(2*x+1, y) & Le(-2*x-1, y) & Le(y, 1) + universe = Polyhedron([]) q = sq1 - sq2 e = Empty @@ -55,17 +59,29 @@ print() print('lexographic min of sq2:', sq2.lexmin()) #test lexmax() print('lexographic max of sq2:', sq2.lexmax()) #test lexmax() print() -print('Polyhedral hull of sq1 + sq2 is:', q.polyhedral_hull()) #test polyhedral hull +print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull print() -print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True +print('is sq1 bounded?', sq1.isbounded()) #bounded should return True print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False print() print('sq6:', sq6) -print('sq6 simplified:', sq6.sample()) -print() -print(universe.project_out([x])) -print('sq7 with out constraints involving y and a', sq7.project_out([a, z, x, y])) #drops dims that are passed +print('sample Polyhedron from sq6:', sq6.sample()) print() -print('sq1 has {} parameters'.format(sq1.num_parameters())) +print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y])) print() -print('does sq1 constraints involve x?', sq1.involves_dims([x])) +print('the verticies for s are:', p.vertices()) + + +# plotting the intersection of two squares +square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) +square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) + +fig = plt.figure() +plot = fig.add_subplot(1, 1, 1, aspect='equal') +square1.plot(plot, facecolor='red', alpha=0.3) +square2.plot(plot, facecolor='blue', alpha=0.3) + +squares = Polyhedron(square1 + square2) +squares.plot(plot, facecolor='blue', alpha=0.3) + +pylab.show()