From dc449ca80b432de202188a4300ef990abeb968a1 Mon Sep 17 00:00:00 2001 From: Vivien Maisonneuve Date: Wed, 23 Jul 2014 17:03:30 +0200 Subject: [PATCH] Remove backup files --- .gitignore | 1 + doc/domain.rst~ | 162 ----------- doc/examples.rst~ | 22 -- doc/geometry.rst~ | 80 ----- doc/index.rst~ | 25 -- doc/install.rst~ | 19 -- doc/linexpr.rst~ | 45 --- doc/modules.rst~ | 15 - doc/polyhedra.rst~ | 58 ---- pypol/domains.py~ | 695 -------------------------------------------- pypol/geometry.py~ | 284 ------------------ pypol/polyhedra.py~ | 358 ----------------------- 12 files changed, 1 insertion(+), 1763 deletions(-) delete mode 100644 doc/domain.rst~ delete mode 100644 doc/examples.rst~ delete mode 100644 doc/geometry.rst~ delete mode 100644 doc/index.rst~ delete mode 100644 doc/install.rst~ delete mode 100644 doc/linexpr.rst~ delete mode 100644 doc/modules.rst~ delete mode 100644 doc/polyhedra.rst~ delete mode 100644 pypol/domains.py~ delete mode 100644 pypol/geometry.py~ delete mode 100644 pypol/polyhedra.py~ diff --git a/.gitignore b/.gitignore index 6e4e70b..7ce9a97 100644 --- a/.gitignore +++ b/.gitignore @@ -4,3 +4,4 @@ /pypol.egg-info/ /venv/ __pycache__ +*~ diff --git a/doc/domain.rst~ b/doc/domain.rst~ deleted file mode 100644 index 91b96f8..0000000 --- a/doc/domain.rst~ +++ /dev/null @@ -1,162 +0,0 @@ -Domains Module -============== - -.. py:class :: Domain - - .. py:method:: polyhedra(self) - - Return . - -Domain Properties ------------------ - .. py:method:: symbols - - Returns a tuple of the symbols that exsist in a domain. - - .. py:method:: dimension - - Returns the number of variables that exist in a domain. - - .. py:method:: disjoint - - Returns a domain as disjoint. - - .. py:method:: num_parameters - - Returns the total number of parameters, input, output or dimensions in a domain. - - .. py:method:: involves_dims(self, dims) - - Returns ``True`` if a domain depends on the given dimensions. - -Unary Properties ----------------- - .. py:method:: isempty(self) - - Return ``True`` is a domain is empty. - - .. py:method:: isuniverse(self) - - Return ``True`` if a domain is the Universe set. - - .. py:method:: isbounded(self) - - Return ``True`` if a domain is bounded - - .. py:method:: disjoint(self) - - Returns a domain as disjoint. - -Binary Properties ------------------ - - .. py:method:: isdisjoint(self, other) - - Return ``True`` if the intersection of *self* and *other* results in an empty set. - - .. py:method:: issubset(self, other) - - Test whether every element in a domain is in *other*. - - .. py:method:: __eq__(self, other) - self == other - - Test whether a domain is equal to *other*. - - .. py:method:: __lt__(self, other) - self < other - - Test whether a domain is a strict subset of *other*. - - .. py:method:: __le__(self, other) - self <= other - - Test whether every element in a domain is in *other*. - - .. py:method:: __gt__(self, other) - self > other - - Test whether a domain is a strict superset of *other*. - - .. py:method:: __ge__(self, other) - self >= other - - Test whether every element in *other* is in a domain. - - - The following methods implement unary operations on a domain. - - .. py:method:: complement(self) - ¬self - - Return the complement of a domain. - - .. py:method:: simplify(self) - - Return a new domain without any redundant constraints. - - .. py:method:: project(self, dims) - - Return a new domain with the given dimensions removed. - - .. py:method:: aspolyhedron(self) - - Return polyhedral hull of a domain. - - .. py:method:: sample(self) - - Return a single sample subset of a domain. - - The following methods implement binary operations on two domains. - - .. py:method:: intersection(self, other) - self | other - - Return a new domain with the elements that are common between *self* and *other*. - - .. py:method:: union(self, other) - self & other - - Return a new domain with all the elements from *self* and *other*. - - .. py:method:: difference(self, other) - self - other - - Return a new domain with the elements in a domain that are not in *other* . - - .. py:method:: __add__(self, other) - self + other - - Return the sum of two domains. - - The following methods use lexicographical ordering to find the maximum or minimum element in a domain. - - .. py:method:: lexmin(self) - - Return a new set containing the lexicographic minimum of the elements in the set. - - .. py:method:: lexmax(self) - - Return a new set containing the lexicographic maximum of the elements in the set. - - - A 2D or 3D domain can be plotted using the :meth:`plot` function. The points, verticies, and faces of a domain can be inspected using the following functions. - - .. py:method:: points(self) - - Return a list of the points contained in a domain. - - .. py:method:: vertices(self) - - Return a list of the verticies of a domain. - - .. py:method:: faces(self) - - Return a list of the vertices for each face of a domain. - - .. py:method:: plot(self, plot=None, **kwargs) - - Return a plot of the given domain. - - - diff --git a/doc/examples.rst~ b/doc/examples.rst~ deleted file mode 100644 index 18a2e83..0000000 --- a/doc/examples.rst~ +++ /dev/null @@ -1,22 +0,0 @@ -Pypol Examples -============== - -Creating a Square ------------------ - To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints for the polyhedron. This example creates a square:: - - >>> x, y = symbols('x y') - >>> # define the constraints of the polyhedron - >>> square = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) - >>> print(square) - >>> And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - - Several unary operations can be performed on a polyhedron. For example: :: - - >>> square2 = - - -Plot Examples -------------- - - diff --git a/doc/geometry.rst~ b/doc/geometry.rst~ deleted file mode 100644 index 1a36921..0000000 --- a/doc/geometry.rst~ +++ /dev/null @@ -1,80 +0,0 @@ -Geometry Module -=============== - -The geometry module is used to obtain information about the points and vertices of a ployhedra. - -.. py:class:: Points - -This class represents points in space. - - .. py:method:: isorigin(self) - - Return ``True`` if a point is the origin. - - .. py:method:: __eq__(self, other) - - Compares two Points for equality. - - .. py:method:: __add__(self, other) - - Adds a Point to a Vector and returns the result as a Point. - - .. py:method:: __sub__(self, other) - - Returns the difference between two Points as a Vector. - - .. py:method:: aspolyhedon(self) - - Returns a Point as a polyhedron. - - -.. py:class:: Vector - -This class represents displacements in space. - - .. py:method:: __eq__(self, other) - - Compares two Vectors for equality. - - .. py:method:: __add__(self, other) - - Adds either a Point or Vector to a Vector. The resulting sum is returned as the same structure *other* is. - - .. py:method:: __sub__(self, other) - - Subtract a Point or Vector from a Vector. The resulting difference is returned in the same form as *other*. - - .. py:method:: __mul__(self, other) - - Multiples a Vector by a scalar value and returns the result as a Vector. - - .. py:method:: __neg__(self) - - Negates a Vector. - - .. py:method:: norm(self) - - Normalizes a Vector. - - - .. py:method:: isnull(self) - - Tests whether a Vector is null. - - .. py:method:: angle(self, other) - - Retrieve the angle required to rotate the vector into the vector passed in argument. The result is an angle in radians, ranging between -pi and - pi. - - .. py:method:: cross(self, other) - - Calculate the cross product of two Vector3D structures. - - .. py:method:: dot(self, other) - - Calculate the dot product of two vectors. - - .. py:method:: __trudiv__(self, other) - - Divide the vector by the specified scalar and returns the result as a vector. - diff --git a/doc/index.rst~ b/doc/index.rst~ deleted file mode 100644 index 12f6f4e..0000000 --- a/doc/index.rst~ +++ /dev/null @@ -1,25 +0,0 @@ -.. pypol documentation master file, created by - sphinx-quickstart on Wed Jun 25 20:34:21 2014. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -Welcome to pypol's documentation! -================================= - -Pypol is a Python library for symbolic mathematics. -If you are new to Pypol, start with the Tutorial. - -This is the central page for all of SymPy's documentation. - - -Contents: - -.. toctree:: - :maxdepth: 2 - - install.rst - examples.rst - modules.rst - - - diff --git a/doc/install.rst~ b/doc/install.rst~ deleted file mode 100644 index 35cd056..0000000 --- a/doc/install.rst~ +++ /dev/null @@ -1,19 +0,0 @@ -.. _installation: - -Installation ------------- - -Dependencies -============ - -Users will first need to install Integer Set Library (isl). The source files of isl are available as a tarball or a git repository. Both -are available `here`_ . - -Source -====== - -Git -=== - - -.. _here: http://freshmeat.net/projects/isl/ diff --git a/doc/linexpr.rst~ b/doc/linexpr.rst~ deleted file mode 100644 index 3771d5f..0000000 --- a/doc/linexpr.rst~ +++ /dev/null @@ -1,45 +0,0 @@ -Linear Expression Module -======================== - - -This class implements linear expressions. - - .. py:method:: coefficient(self, symbol) - - Return the coefficient value of the given symbol. - - .. py:method:: coefficients(self) - - Return a list of the coefficients of an expression - - .. py:method:: constant(self) - - Return the constant value of an expression. - - .. py:method:: symbols(self) - - Return a list of symbols in an expression. - - .. py:method:: dimension(self) - - Return the number of vriables in an expression. - - .. py:method:: __sub__(self, other) - - Return the difference between two expressions. - - .. py:method:: subs(self, symbol, expression=None) - - Subsitute the given value into an expression and return the resulting expression. - - .. py:method:: fromsympy(self) - - Convert sympy object to an expression. - - .. py:method:: tosympy(self) - - Return an expression as a sympy object. - -.. py:class:: Dummy(Symbol) - -This class returns a dummy symbol to ensure that each no variables are repeated in an expression diff --git a/doc/modules.rst~ b/doc/modules.rst~ deleted file mode 100644 index 2ecf371..0000000 --- a/doc/modules.rst~ +++ /dev/null @@ -1,15 +0,0 @@ -.. module-docs: - -Pypol Module Reference -====================== - -There are four main Pypol modules: - -.. toctree:: - :maxdepth: 2 - - polyhedra.rst - domain.rst - linexpr.rst - geometry.rst - diff --git a/doc/polyhedra.rst~ b/doc/polyhedra.rst~ deleted file mode 100644 index 67cb251..0000000 --- a/doc/polyhedra.rst~ +++ /dev/null @@ -1,58 +0,0 @@ -Polyhedra Module -================ - -.. py:class:: Polyhedron - - Polyhedron class allows users to build and inspect polyherons. The following methods provide the properties of a polyhedron. - - .. py:method:: equalities(self) - - Return a list of the equalities in a polyhedron. - - .. py:method:: inequalities(self) - - Return a list of the inequalities in a polyhedron. - - .. py:method:: constraints(self) - - Return ta list of the constraints of a polyhedron. - - The following unary operations can be used to inspect a polyhedron. - - .. py:method:: disjoint(self) - - Returns a polyhedron as a disjoint. - - .. py:method:: isuniverse(self) - - Return ``True`` if a polyhedron is the Universe set. - - .. py:method:: subs(self, symbol, expression=None) - - Subsitutes an expression into a polyhedron and returns the result. - -To create a polyhedron, the user must use the folloing functions to define the equalities and inequalities which are the contraints of a polyhedron. - -.. py:function:: Lt(left, right) - - Assert first set is less than the second set. - -.. py:function:: Le(left, right) - - Assert first set is less than or equal to the second set. - -.. py:function:: Eq(left, right) - - Assert first set is equal to the second set. - -.. py:function:: Ne(left, right) - - Assert first set is not equal to the second set. - -.. py:function:: Gt(left, right) - - Assert first set is greater than the second set. - -.. py:function:: Ge(left, right) - - Assert first set is greater than or equal to the second set. diff --git a/pypol/domains.py~ b/pypol/domains.py~ deleted file mode 100644 index be9dd4b..0000000 --- a/pypol/domains.py~ +++ /dev/null @@ -1,695 +0,0 @@ -import ast -import functools -import re -import math - -from fractions import Fraction - -from . import islhelper -from .islhelper import mainctx, libisl -from .linexprs import Expression, Symbol, Rational -from .geometry import GeometricObject, Point, Vector - - -__all__ = [ - 'Domain', - 'And', 'Or', 'Not', -] - - -@functools.total_ordering -class Domain(GeometricObject): - - __slots__ = ( - '_polyhedra', - '_symbols', - '_dimension', - ) - - def __new__(cls, *polyhedra): - from .polyhedra import Polyhedron - if len(polyhedra) == 1: - argument = polyhedra[0] - if isinstance(argument, str): - return cls.fromstring(argument) - elif isinstance(argument, GeometricObject): - return argument.aspolyhedron() - else: - raise TypeError('argument must be a string ' - 'or a GeometricObject instance') - else: - for polyhedron in polyhedra: - if not isinstance(polyhedron, Polyhedron): - raise TypeError('arguments must be Polyhedron instances') - symbols = cls._xsymbols(polyhedra) - islset = cls._toislset(polyhedra, symbols) - return cls._fromislset(islset, symbols) - - @classmethod - def _xsymbols(cls, iterator): - """ - Return the ordered tuple of symbols present in iterator. - """ - symbols = set() - for item in iterator: - symbols.update(item.symbols) - return tuple(sorted(symbols, key=Symbol.sortkey)) - - @property - def polyhedra(self): - return self._polyhedra - - @property - def symbols(self): - return self._symbols - - @property - def dimension(self): - return self._dimension - - def disjoint(self): - """ - Returns this set as disjoint. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_make_disjoint(mainctx, islset) - return self._fromislset(islset, self.symbols) - - def isempty(self): - """ - Returns true if this set is an Empty set. - """ - islset = self._toislset(self.polyhedra, self.symbols) - empty = bool(libisl.isl_set_is_empty(islset)) - libisl.isl_set_free(islset) - return empty - - def __bool__(self): - return not self.isempty() - - def isuniverse(self): - """ - Returns true if this set is the Universe set. - """ - islset = self._toislset(self.polyhedra, self.symbols) - universe = bool(libisl.isl_set_plain_is_universe(islset)) - libisl.isl_set_free(islset) - return universe - - def isbounded(self): - """ - Returns true if this set is bounded. - """ - islset = self._toislset(self.polyhedra, self.symbols) - bounded = bool(libisl.isl_set_is_bounded(islset)) - libisl.isl_set_free(islset) - return bounded - - def __eq__(self, other): - """ - Returns true if two sets are equal. - """ - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = other._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_equal(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def isdisjoint(self, other): - """ - Return True if two sets have a null intersection. - """ - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_disjoint(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def issubset(self, other): - """ - Report whether another set contains this set. - """ - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_subset(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def __le__(self, other): - """ - Returns true if this set is less than or equal to another set. - """ - return self.issubset(other) - - def __lt__(self, other): - """ - Returns true if this set is less than another set. - """ - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_strict_subset(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def complement(self): - """ - Returns the complement of this set. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_complement(islset) - return self._fromislset(islset, self.symbols) - - def __invert__(self): - """ - Returns the complement of this set. - """ - return self.complement() - - def simplify(self): - """ - Returns a set without redundant constraints. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_remove_redundancies(islset) - return self._fromislset(islset, self.symbols) - - def aspolyhedron(self): - """ - Returns polyhedral hull of set. - """ - from .polyhedra import Polyhedron - islset = self._toislset(self.polyhedra, self.symbols) - islbset = libisl.isl_set_polyhedral_hull(islset) - return Polyhedron._fromislbasicset(islbset, self.symbols) - - def asdomain(self): - return self - - def project(self, dims): - """ - Return new set with given dimensions removed. - """ - islset = self._toislset(self.polyhedra, self.symbols) - n = 0 - for index, symbol in reversed(list(enumerate(self.symbols))): - if symbol in dims: - n += 1 - elif n > 0: - islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n) - n = 0 - if n > 0: - islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n) - dims = [symbol for symbol in self.symbols if symbol not in dims] - return Domain._fromislset(islset, dims) - - def sample(self): - """ - Returns a single subset of the input. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islpoint = libisl.isl_set_sample_point(islset) - if bool(libisl.isl_point_is_void(islpoint)): - libisl.isl_point_free(islpoint) - raise ValueError('domain must be non-empty') - point = {} - for index, symbol in enumerate(self.symbols): - coordinate = libisl.isl_point_get_coordinate_val(islpoint, - libisl.isl_dim_set, index) - coordinate = islhelper.isl_val_to_int(coordinate) - point[symbol] = coordinate - libisl.isl_point_free(islpoint) - return point - - def intersection(self, *others): - """ - Return the intersection of two sets as a new set. - """ - if len(others) == 0: - return self - symbols = self._xsymbols((self,) + others) - islset1 = self._toislset(self.polyhedra, symbols) - for other in others: - islset2 = other._toislset(other.polyhedra, symbols) - islset1 = libisl.isl_set_intersect(islset1, islset2) - return self._fromislset(islset1, symbols) - - def __and__(self, other): - """ - Return the intersection of two sets as a new set. - """ - return self.intersection(other) - - def union(self, *others): - """ - Return the union of sets as a new set. - """ - if len(others) == 0: - return self - symbols = self._xsymbols((self,) + others) - islset1 = self._toislset(self.polyhedra, symbols) - for other in others: - islset2 = other._toislset(other.polyhedra, symbols) - islset1 = libisl.isl_set_union(islset1, islset2) - return self._fromislset(islset1, symbols) - - def __or__(self, other): - """ - Return a new set with elements from both sets. - """ - return self.union(other) - - def __add__(self, other): - """ - Return new set containing all elements in both sets. - """ - return self.union(other) - - def difference(self, other): - """ - Return the difference of two sets as a new set. - """ - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = other._toislset(other.polyhedra, symbols) - islset = libisl.isl_set_subtract(islset1, islset2) - return self._fromislset(islset, symbols) - - def __sub__(self, other): - """ - Return the difference of two sets as a new set. - """ - return self.difference(other) - - def lexmin(self): - """ - Return a new set containing the lexicographic minimum of the elements in the set. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_lexmin(islset) - return self._fromislset(islset, self.symbols) - - def lexmax(self): - """ - Return a new set containing the lexicographic maximum of the elements in the set. - """ - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_lexmax(islset) - return self._fromislset(islset, self.symbols) - - def num_parameters(self): - """ - Return the total number of parameters, input, output or set dimensions. - """ - islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) - num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set) - return num - - def involves_dims(self, dims): - """ - Returns true if set depends on given dimensions. - """ - islset = self._toislset(self.polyhedra, self.symbols) - dims = sorted(dims) - symbols = sorted(list(self.symbols)) - n = 0 - if len(dims)>0: - for dim in dims: - if dim in symbols: - first = symbols.index(dims[0]) - n +=1 - else: - first = 0 - else: - return False - value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n)) - libisl.isl_set_free(islset) - return value - - _RE_COORDINATE = re.compile(r'\((?P\-?\d+)\)(/(?P\d+))?') - - def vertices(self): - """ - Return a list of vertices for this Polygon. - """ - from .polyhedra import Polyhedron - islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) - vertices = libisl.isl_basic_set_compute_vertices(islbset); - vertices = islhelper.isl_vertices_vertices(vertices) - points = [] - for vertex in vertices: - expr = libisl.isl_vertex_get_expr(vertex) - coordinates = [] - if islhelper.isl_version < '0.13': - constraints = islhelper.isl_basic_set_constraints(expr) - for constraint in constraints: - constant = libisl.isl_constraint_get_constant_val(constraint) - constant = islhelper.isl_val_to_int(constant) - for index, symbol in enumerate(self.symbols): - coefficient = libisl.isl_constraint_get_coefficient_val(constraint, - libisl.isl_dim_set, index) - coefficient = islhelper.isl_val_to_int(coefficient) - if coefficient != 0: - coordinate = -Fraction(constant, coefficient) - coordinates.append((symbol, coordinate)) - else: - string = islhelper.isl_multi_aff_to_str(expr) - matches = self._RE_COORDINATE.finditer(string) - for symbol, match in zip(self.symbols, matches): - numerator = int(match.group('num')) - denominator = match.group('den') - denominator = 1 if denominator is None else int(denominator) - coordinate = Fraction(numerator, denominator) - coordinates.append((symbol, coordinate)) - points.append(Point(coordinates)) - return points - - def points(self): - """ - Returns the points contained in the set. - """ - if not self.isbounded(): - raise ValueError('domain must be bounded') - from .polyhedra import Universe, Eq - islset = self._toislset(self.polyhedra, self.symbols) - islpoints = islhelper.isl_set_points(islset) - points = [] - for islpoint in islpoints: - coordinates = {} - for index, symbol in enumerate(self.symbols): - coordinate = libisl.isl_point_get_coordinate_val(islpoint, - libisl.isl_dim_set, index) - coordinate = islhelper.isl_val_to_int(coordinate) - coordinates[symbol] = coordinate - points.append(Point(coordinates)) - return points - - @classmethod - def _polygon_inner_point(cls, points): - symbols = points[0].symbols - coordinates = {symbol: 0 for symbol in symbols} - for point in points: - for symbol, coordinate in point.coordinates(): - coordinates[symbol] += coordinate - for symbol in symbols: - coordinates[symbol] /= len(points) - return Point(coordinates) - - @classmethod - def _sort_polygon_2d(cls, points): - if len(points) <= 3: - return points - o = cls._polygon_inner_point(points) - angles = {} - for m in points: - om = Vector(o, m) - dx, dy = (coordinate for symbol, coordinate in om.coordinates()) - angle = math.atan2(dy, dx) - angles[m] = angle - return sorted(points, key=angles.get) - - @classmethod - def _sort_polygon_3d(cls, points): - if len(points) <= 3: - return points - o = cls._polygon_inner_point(points) - a = points[0] - oa = Vector(o, a) - norm_oa = oa.norm() - for b in points[1:]: - ob = Vector(o, b) - u = oa.cross(ob) - if not u.isnull(): - u = u.asunit() - break - else: - raise ValueError('degenerate polygon') - angles = {a: 0.} - for m in points[1:]: - om = Vector(o, m) - normprod = norm_oa * om.norm() - cosinus = max(oa.dot(om) / normprod, -1.) - sinus = u.dot(oa.cross(om)) / normprod - angle = math.acos(cosinus) - angle = math.copysign(angle, sinus) - angles[m] = angle - return sorted(points, key=angles.get) - - def faces(self): - faces = [] - for polyhedron in self.polyhedra: - vertices = polyhedron.vertices() - for constraint in polyhedron.constraints: - face = [] - for vertex in vertices: - if constraint.subs(vertex.coordinates()) == 0: - face.append(vertex) - if len(face) >= 3: - faces.append(face) - return faces - - def _plot_2d(self, plot=None, **kwargs): - import matplotlib.pyplot as plt - from matplotlib.patches import Polygon - if plot is None: - fig = plt.figure() - plot = fig.add_subplot(1, 1, 1) - xmin, xmax = plot.get_xlim() - ymin, ymax = plot.get_ylim() - for polyhedron in self.polyhedra: - vertices = polyhedron._sort_polygon_2d(polyhedron.vertices()) - xys = [tuple(vertex.values()) for vertex in vertices] - xs, ys = zip(*xys) - xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs))) - ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys))) - plot.add_patch(Polygon(xys, closed=True, **kwargs)) - plot.set_xlim(xmin, xmax) - plot.set_ylim(ymin, ymax) - return plot - - def _plot_3d(self, plot=None, **kwargs): - import matplotlib.pyplot as plt - from mpl_toolkits.mplot3d import Axes3D - from mpl_toolkits.mplot3d.art3d import Poly3DCollection - if plot is None: - fig = plt.figure() - axes = Axes3D(fig) - else: - axes = plot - xmin, xmax = axes.get_xlim() - ymin, ymax = axes.get_ylim() - zmin, zmax = axes.get_zlim() - poly_xyzs = [] - for vertices in self.faces(): - vertices = self._sort_polygon_3d(vertices) - vertices.append(vertices[0]) - face_xyzs = [tuple(vertex.values()) for vertex in vertices] - xs, ys, zs = zip(*face_xyzs) - xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs))) - ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys))) - zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs))) - poly_xyzs.append(face_xyzs) - collection = Poly3DCollection(poly_xyzs, **kwargs) - axes.add_collection3d(collection) - axes.set_xlim(xmin, xmax) - axes.set_ylim(ymin, ymax) - axes.set_zlim(zmin, zmax) - return axes - - def plot(self, plot=None, **kwargs): - """ - Display plot of this set. - """ - if not self.isbounded(): - raise ValueError('domain must be bounded') - elif self.dimension == 2: - return self._plot_2d(plot=plot, **kwargs) - elif self.dimension == 3: - return self._plot_3d(plot=plot, **kwargs) - else: - raise ValueError('polyhedron must be 2 or 3-dimensional') - - def __contains__(self, point): - for polyhedron in self.polyhedra: - if point in polyhedron: - return True - return False - - def subs(self, symbol, expression=None): - polyhedra = [polyhedron.subs(symbol, expression) - for polyhedron in self.polyhedra] - return Domain(*polyhedra) - - @classmethod - def _fromislset(cls, islset, symbols): - from .polyhedra import Polyhedron - islset = libisl.isl_set_remove_divs(islset) - islbsets = islhelper.isl_set_basic_sets(islset) - libisl.isl_set_free(islset) - polyhedra = [] - for islbset in islbsets: - polyhedron = Polyhedron._fromislbasicset(islbset, symbols) - polyhedra.append(polyhedron) - if len(polyhedra) == 0: - from .polyhedra import Empty - return Empty - elif len(polyhedra) == 1: - return polyhedra[0] - else: - self = object().__new__(Domain) - self._polyhedra = tuple(polyhedra) - self._symbols = cls._xsymbols(polyhedra) - self._dimension = len(self._symbols) - return self - - @classmethod - def _toislset(cls, polyhedra, symbols): - polyhedron = polyhedra[0] - islbset = polyhedron._toislbasicset(polyhedron.equalities, - polyhedron.inequalities, symbols) - islset1 = libisl.isl_set_from_basic_set(islbset) - for polyhedron in polyhedra[1:]: - islbset = polyhedron._toislbasicset(polyhedron.equalities, - polyhedron.inequalities, symbols) - islset2 = libisl.isl_set_from_basic_set(islbset) - islset1 = libisl.isl_set_union(islset1, islset2) - return islset1 - - @classmethod - def _fromast(cls, node): - from .polyhedra import Polyhedron - if isinstance(node, ast.Module) and len(node.body) == 1: - return cls._fromast(node.body[0]) - elif isinstance(node, ast.Expr): - return cls._fromast(node.value) - elif isinstance(node, ast.UnaryOp): - domain = cls._fromast(node.operand) - if isinstance(node.operand, ast.invert): - return Not(domain) - elif isinstance(node, ast.BinOp): - domain1 = cls._fromast(node.left) - domain2 = cls._fromast(node.right) - if isinstance(node.op, ast.BitAnd): - return And(domain1, domain2) - elif isinstance(node.op, ast.BitOr): - return Or(domain1, domain2) - elif isinstance(node, ast.Compare): - equalities = [] - inequalities = [] - left = Expression._fromast(node.left) - for i in range(len(node.ops)): - op = node.ops[i] - right = Expression._fromast(node.comparators[i]) - if isinstance(op, ast.Lt): - inequalities.append(right - left - 1) - elif isinstance(op, ast.LtE): - inequalities.append(right - left) - elif isinstance(op, ast.Eq): - equalities.append(left - right) - elif isinstance(op, ast.GtE): - inequalities.append(left - right) - elif isinstance(op, ast.Gt): - inequalities.append(left - right - 1) - else: - break - left = right - else: - return Polyhedron(equalities, inequalities) - raise SyntaxError('invalid syntax') - - _RE_BRACES = re.compile(r'^\{\s*|\s*\}$') - _RE_EQ = re.compile(r'([^<=>])=([^<=>])') - _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩') - _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪') - _RE_NOT = re.compile(r'\bnot\b|!|¬') - _RE_NUM_VAR = Expression._RE_NUM_VAR - _RE_OPERATORS = re.compile(r'(&|\||~)') - - @classmethod - def fromstring(cls, string): - # remove curly brackets - string = cls._RE_BRACES.sub(r'', string) - # replace '=' by '==' - string = cls._RE_EQ.sub(r'\1==\2', string) - # replace 'and', 'or', 'not' - string = cls._RE_AND.sub(r' & ', string) - string = cls._RE_OR.sub(r' | ', string) - string = cls._RE_NOT.sub(r' ~', string) - # add implicit multiplication operators, e.g. '5x' -> '5*x' - string = cls._RE_NUM_VAR.sub(r'\1*\2', string) - # add parentheses to force precedence - tokens = cls._RE_OPERATORS.split(string) - for i, token in enumerate(tokens): - if i % 2 == 0: - token = '({})'.format(token) - tokens[i] = token - string = ''.join(tokens) - tree = ast.parse(string, 'eval') - return cls._fromast(tree) - - def __repr__(self): - assert len(self.polyhedra) >= 2 - strings = [repr(polyhedron) for polyhedron in self.polyhedra] - return 'Or({})'.format(', '.join(strings)) - - def _repr_latex_(self): - strings = [] - for polyhedron in self.polyhedra: - strings.append('({})'.format(polyhedron._repr_latex_().strip('$'))) - return '${}$'.format(' \\vee '.join(strings)) - - @classmethod - def fromsympy(cls, expr): - import sympy - from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt - funcmap = { - sympy.And: And, sympy.Or: Or, sympy.Not: Not, - sympy.Lt: Lt, sympy.Le: Le, - sympy.Eq: Eq, sympy.Ne: Ne, - sympy.Ge: Ge, sympy.Gt: Gt, - } - if expr.func in funcmap: - args = [Domain.fromsympy(arg) for arg in expr.args] - return funcmap[expr.func](*args) - elif isinstance(expr, sympy.Expr): - return Expression.fromsympy(expr) - raise ValueError('non-domain expression: {!r}'.format(expr)) - - def tosympy(self): - import sympy - polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra] - return sympy.Or(*polyhedra) - - -def And(*domains): - """ - Return the intersection of two sets as a new set. - """ - if len(domains) == 0: - from .polyhedra import Universe - return Universe - else: - return domains[0].intersection(*domains[1:]) - -def Or(*domains): - """ - Return the union of sets as a new set. - """ - if len(domains) == 0: - from .polyhedra import Empty - return Empty - else: - return domains[0].union(*domains[1:]) - -def Not(domain): - """ - Returns the complement of this set. - """ - return ~domain diff --git a/pypol/geometry.py~ b/pypol/geometry.py~ deleted file mode 100644 index 8473c87..0000000 --- a/pypol/geometry.py~ +++ /dev/null @@ -1,284 +0,0 @@ -import math -import numbers -import operator - -from abc import ABC, abstractproperty, abstractmethod -from collections import OrderedDict, Mapping - -from .linexprs import Symbol - - -__all__ = [ - 'GeometricObject', - 'Point', - 'Vector', -] - - -class GeometricObject(ABC): - - @abstractproperty - def symbols(self): - pass - - @property - def dimension(self): - return len(self.symbols) - - @abstractmethod - def aspolyhedron(self): - pass - - def asdomain(self): - return self.aspolyhedron() - - -class Coordinates: - - __slots__ = ( - '_coordinates', - ) - - def __new__(cls, coordinates): - if isinstance(coordinates, Mapping): - coordinates = coordinates.items() - self = object().__new__(cls) - self._coordinates = OrderedDict() - for symbol, coordinate in sorted(coordinates, - key=lambda item: item[0].sortkey()): - if not isinstance(symbol, Symbol): - raise TypeError('symbols must be Symbol instances') - if not isinstance(coordinate, numbers.Real): - raise TypeError('coordinates must be real numbers') - self._coordinates[symbol] = coordinate - return self - - @property - def symbols(self): - return tuple(self._coordinates) - - @property - def dimension(self): - return len(self.symbols) - - def coordinates(self): - yield from self._coordinates.items() - - def coordinate(self, symbol): - if not isinstance(symbol, Symbol): - raise TypeError('symbol must be a Symbol instance') - return self._coordinates[symbol] - - __getitem__ = coordinate - - def values(self): - yield from self._coordinates.values() - - def __bool__(self): - return any(self._coordinates.values()) - - def __hash__(self): - return hash(tuple(self.coordinates())) - - def __repr__(self): - string = ', '.join(['{!r}: {!r}'.format(symbol, coordinate) - for symbol, coordinate in self.coordinates()]) - return '{}({{{}}})'.format(self.__class__.__name__, string) - - def _map(self, func): - for symbol, coordinate in self.coordinates(): - yield symbol, func(coordinate) - - def _iter2(self, other): - if self.symbols != other.symbols: - raise ValueError('arguments must belong to the same space') - coordinates1 = self._coordinates.values() - coordinates2 = other._coordinates.values() - yield from zip(self.symbols, coordinates1, coordinates2) - - def _map2(self, other, func): - for symbol, coordinate1, coordinate2 in self._iter2(other): - yield symbol, func(coordinate1, coordinate2) - - -class Point(Coordinates, GeometricObject): - """ - This class represents points in space. - """ - - def isorigin(self): - """ - Return True if a Point is the origin. - """ - return not bool(self) - - def __hash__(self): - return super().__hash__() - - def __add__(self, other): - if not isinstance(other, Vector): - return NotImplemented - coordinates = self._map2(other, operator.add) - return Point(coordinates) - - def __sub__(self, other): - coordinates = [] - if isinstance(other, Point): - coordinates = self._map2(other, operator.sub) - return Vector(coordinates) - elif isinstance(other, Vector): - coordinates = self._map2(other, operator.sub) - return Point(coordinates) - else: - return NotImplemented - - def __eq__(self, other): - """ - Compares two Points for equality. - """ - return isinstance(other, Point) and \ - self._coordinates == other._coordinates - - def aspolyhedron(self): - """ - Return a Point as a polyhedron. - """ - from .polyhedra import Polyhedron - equalities = [] - for symbol, coordinate in self.coordinates(): - equalities.append(symbol - coordinate) - return Polyhedron(equalities) - - -class Vector(Coordinates): - """ - This class represents displacements in space. - """ - - def __new__(cls, initial, terminal=None): - if not isinstance(initial, Point): - initial = Point(initial) - if terminal is None: - coordinates = initial._coordinates - else: - if not isinstance(terminal, Point): - terminal = Point(terminal) - coordinates = terminal._map2(initial, operator.sub) - return super().__new__(cls, coordinates) - - def isnull(self): - """ - Returns true if a Vector is null. - """ - return not bool(self) - - def __hash__(self): - return super().__hash__() - - def __add__(self, other): - """ - Adds either a Point or Vector to a Vector. - """ - if isinstance(other, (Point, Vector)): - coordinates = self._map2(other, operator.add) - return other.__class__(coordinates) - return NotImplemented - - def angle(self, other): - """ - Retrieve the angle required to rotate the vector into the vector passed in argument. The result is an angle in radians, ranging between -pi and pi. - """ - if not isinstance(other, Vector): - raise TypeError('argument must be a Vector instance') - cosinus = self.dot(other) / (self.norm()*other.norm()) - return math.acos(cosinus) - - def cross(self, other): - """ - Calculate the cross product of two Vector3D structures. - """ - if not isinstance(other, Vector): - raise TypeError('other must be a Vector instance') - if self.dimension != 3 or other.dimension != 3: - raise ValueError('arguments must be three-dimensional vectors') - if self.symbols != other.symbols: - raise ValueError('arguments must belong to the same space') - x, y, z = self.symbols - coordinates = [] - coordinates.append((x, self[y]*other[z] - self[z]*other[y])) - coordinates.append((y, self[z]*other[x] - self[x]*other[z])) - coordinates.append((z, self[x]*other[y] - self[y]*other[x])) - return Vector(coordinates) - - def __truediv__(self, other): - """ - Divide the vector by the specified scalar and returns the result as a - vector. - """ - if not isinstance(other, numbers.Real): - return NotImplemented - coordinates = self._map(lambda coordinate: coordinate / other) - return Vector(coordinates) - - def dot(self, other): - """ - Calculate the dot product of two vectors. - """ - if not isinstance(other, Vector): - raise TypeError('argument must be a Vector instance') - result = 0 - for symbol, coordinate1, coordinate2 in self._iter2(other): - result += coordinate1 * coordinate2 - return result - - def __eq__(self, other): - """ - Compares two Vectors for equality. - """ - return isinstance(other, Vector) and \ - self._coordinates == other._coordinates - - def __hash__(self): - return hash(tuple(self.coordinates())) - - def __mul__(self, other): - """ - Multiplies a Vector by a scalar value. - """ - if not isinstance(other, numbers.Real): - return NotImplemented - coordinates = self._map(lambda coordinate: other * coordinate) - return Vector(coordinates) - - __rmul__ = __mul__ - - def __neg__(self): - """ - Returns the negated form of a Vector. - """ - coordinates = self._map(operator.neg) - return Vector(coordinates) - - def norm(self): - """ - Normalizes a Vector. - """ - return math.sqrt(self.norm2()) - - def norm2(self): - result = 0 - for coordinate in self._coordinates.values(): - result += coordinate ** 2 - return result - - def asunit(self): - return self / self.norm() - - def __sub__(self, other): - """ - Subtract a Point or Vector from a Vector. - """ - if isinstance(other, (Point, Vector)): - coordinates = self._map2(other, operator.sub) - return other.__class__(coordinates) - return NotImplemented diff --git a/pypol/polyhedra.py~ b/pypol/polyhedra.py~ deleted file mode 100644 index ccb1a8c..0000000 --- a/pypol/polyhedra.py~ +++ /dev/null @@ -1,358 +0,0 @@ -import functools -import math -import numbers - -from . import islhelper - -from .islhelper import mainctx, libisl -from .geometry import GeometricObject, Point -from .linexprs import Expression, Rational -from .domains import Domain - - -__all__ = [ - 'Polyhedron', - 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt', - 'Empty', 'Universe', -] - - -class Polyhedron(Domain): - - __slots__ = ( - '_equalities', - '_inequalities', - '_constraints', - '_symbols', - '_dimension', - ) - - def __new__(cls, equalities=None, inequalities=None): - if isinstance(equalities, str): - if inequalities is not None: - raise TypeError('too many arguments') - return cls.fromstring(equalities) - elif isinstance(equalities, GeometricObject): - if inequalities is not None: - raise TypeError('too many arguments') - return equalities.aspolyhedron() - if equalities is None: - equalities = [] - else: - for i, equality in enumerate(equalities): - if not isinstance(equality, Expression): - raise TypeError('equalities must be linear expressions') - equalities[i] = equality.scaleint() - if inequalities is None: - inequalities = [] - else: - for i, inequality in enumerate(inequalities): - if not isinstance(inequality, Expression): - raise TypeError('inequalities must be linear expressions') - inequalities[i] = inequality.scaleint() - symbols = cls._xsymbols(equalities + inequalities) - islbset = cls._toislbasicset(equalities, inequalities, symbols) - return cls._fromislbasicset(islbset, symbols) - - @property - def equalities(self): - return self._equalities - - @property - def inequalities(self): - return self._inequalities - - @property - def constraints(self): - return self._constraints - - @property - def polyhedra(self): - return self, - - def disjoint(self): - """ - Return this set as disjoint. - """ - return self - - def isuniverse(self): - """ - Return true if this set is the Universe set. - """ - islbset = self._toislbasicset(self.equalities, self.inequalities, - self.symbols) - universe = bool(libisl.isl_basic_set_is_universe(islbset)) - libisl.isl_basic_set_free(islbset) - return universe - - def aspolyhedron(self): - """ - Return polyhedral hull of this set. - """ - return self - - def __contains__(self, point): - if not isinstance(point, Point): - raise TypeError('point must be a Point instance') - if self.symbols != point.symbols: - raise ValueError('arguments must belong to the same space') - for equality in self.equalities: - if equality.subs(point.coordinates()) != 0: - return False - for inequality in self.inequalities: - if inequality.subs(point.coordinates()) < 0: - return False - return True - - def subs(self, symbol, expression=None): - equalities = [equality.subs(symbol, expression) - for equality in self.equalities] - inequalities = [inequality.subs(symbol, expression) - for inequality in self.inequalities] - return Polyhedron(equalities, inequalities) - - def _asinequalities(self): - inequalities = list(self.equalities) - inequalities.extend([-expression for expression in self.equalities]) - inequalities.extend(self.inequalities) - return inequalities - - def widen(self, other): - if not isinstance(other, Polyhedron): - raise ValueError('argument must be a Polyhedron instance') - inequalities1 = self._asinequalities() - inequalities2 = other._asinequalities() - inequalities = [] - for inequality1 in inequalities1: - if other <= Polyhedron(inequalities=[inequality1]): - inequalities.append(inequality1) - for inequality2 in inequalities2: - for i in range(len(inequalities1)): - inequalities3 = inequalities1[:i] + inequalities[i + 1:] - inequalities3.append(inequality2) - polyhedron3 = Polyhedron(inequalities=inequalities3) - if self == polyhedron3: - inequalities.append(inequality2) - break - return Polyhedron(inequalities=inequalities) - - @classmethod - def _fromislbasicset(cls, islbset, symbols): - if libisl.isl_basic_set_is_empty(islbset): - return Empty - if libisl.isl_basic_set_is_universe(islbset): - return Universe - islconstraints = islhelper.isl_basic_set_constraints(islbset) - equalities = [] - inequalities = [] - for islconstraint in islconstraints: - constant = libisl.isl_constraint_get_constant_val(islconstraint) - constant = islhelper.isl_val_to_int(constant) - coefficients = {} - for index, symbol in enumerate(symbols): - coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint, - libisl.isl_dim_set, index) - coefficient = islhelper.isl_val_to_int(coefficient) - if coefficient != 0: - coefficients[symbol] = coefficient - expression = Expression(coefficients, constant) - if libisl.isl_constraint_is_equality(islconstraint): - equalities.append(expression) - else: - inequalities.append(expression) - libisl.isl_basic_set_free(islbset) - self = object().__new__(Polyhedron) - self._equalities = tuple(equalities) - self._inequalities = tuple(inequalities) - self._constraints = tuple(equalities + inequalities) - self._symbols = cls._xsymbols(self._constraints) - self._dimension = len(self._symbols) - return self - - @classmethod - def _toislbasicset(cls, equalities, inequalities, symbols): - dimension = len(symbols) - indices = {symbol: index for index, symbol in enumerate(symbols)} - islsp = libisl.isl_space_set_alloc(mainctx, 0, dimension) - islbset = libisl.isl_basic_set_universe(libisl.isl_space_copy(islsp)) - islls = libisl.isl_local_space_from_space(islsp) - for equality in equalities: - isleq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(islls)) - for symbol, coefficient in equality.coefficients(): - islval = str(coefficient).encode() - islval = libisl.isl_val_read_from_str(mainctx, islval) - index = indices[symbol] - isleq = libisl.isl_constraint_set_coefficient_val(isleq, - libisl.isl_dim_set, index, islval) - if equality.constant != 0: - islval = str(equality.constant).encode() - islval = libisl.isl_val_read_from_str(mainctx, islval) - isleq = libisl.isl_constraint_set_constant_val(isleq, islval) - islbset = libisl.isl_basic_set_add_constraint(islbset, isleq) - for inequality in inequalities: - islin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(islls)) - for symbol, coefficient in inequality.coefficients(): - islval = str(coefficient).encode() - islval = libisl.isl_val_read_from_str(mainctx, islval) - index = indices[symbol] - islin = libisl.isl_constraint_set_coefficient_val(islin, - libisl.isl_dim_set, index, islval) - if inequality.constant != 0: - islval = str(inequality.constant).encode() - islval = libisl.isl_val_read_from_str(mainctx, islval) - islin = libisl.isl_constraint_set_constant_val(islin, islval) - islbset = libisl.isl_basic_set_add_constraint(islbset, islin) - return islbset - - @classmethod - def fromstring(cls, string): - domain = Domain.fromstring(string) - if not isinstance(domain, Polyhedron): - raise ValueError('non-polyhedral expression: {!r}'.format(string)) - return domain - - def __repr__(self): - strings = [] - for equality in self.equalities: - strings.append('Eq({}, 0)'.format(equality)) - for inequality in self.inequalities: - strings.append('Ge({}, 0)'.format(inequality)) - if len(strings) == 1: - return strings[0] - else: - return 'And({})'.format(', '.join(strings)) - - def _repr_latex_(self): - strings = [] - for equality in self.equalities: - strings.append('{} = 0'.format(equality._repr_latex_().strip('$'))) - for inequality in self.inequalities: - strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$'))) - return '$${}$$'.format(' \\wedge '.join(strings)) - - @classmethod - def fromsympy(cls, expr): - domain = Domain.fromsympy(expr) - if not isinstance(domain, Polyhedron): - raise ValueError('non-polyhedral expression: {!r}'.format(expr)) - return domain - - def tosympy(self): - import sympy - constraints = [] - for equality in self.equalities: - constraints.append(sympy.Eq(equality.tosympy(), 0)) - for inequality in self.inequalities: - constraints.append(sympy.Ge(inequality.tosympy(), 0)) - return sympy.And(*constraints) - - -class EmptyType(Polyhedron): - - __slots__ = Polyhedron.__slots__ - - def __new__(cls): - self = object().__new__(cls) - self._equalities = (Rational(1),) - self._inequalities = () - self._constraints = self._equalities - self._symbols = () - self._dimension = 0 - return self - - def widen(self, other): - if not isinstance(other, Polyhedron): - raise ValueError('argument must be a Polyhedron instance') - return other - - def __repr__(self): - return 'Empty' - - def _repr_latex_(self): - return '$$\\emptyset$$' - -Empty = EmptyType() - - -class UniverseType(Polyhedron): - - __slots__ = Polyhedron.__slots__ - - def __new__(cls): - self = object().__new__(cls) - self._equalities = () - self._inequalities = () - self._constraints = () - self._symbols = () - self._dimension = () - return self - - def __repr__(self): - return 'Universe' - - def _repr_latex_(self): - return '$$\\Omega$$' - -Universe = UniverseType() - - -def _polymorphic(func): - @functools.wraps(func) - def wrapper(left, right): - if not isinstance(left, Expression): - if isinstance(left, numbers.Rational): - left = Rational(left) - else: - raise TypeError('left must be a a rational number ' - 'or a linear expression') - if not isinstance(right, Expression): - if isinstance(right, numbers.Rational): - right = Rational(right) - else: - raise TypeError('right must be a a rational number ' - 'or a linear expression') - return func(left, right) - return wrapper - -@_polymorphic -def Lt(left, right): - """ - Return true if the first set is less than the second. - """ - return Polyhedron([], [right - left - 1]) - -@_polymorphic -def Le(left, right): - """ - Return true the first set is less than or equal to the second. - """ - return Polyhedron([], [right - left]) - -@_polymorphic -def Eq(left, right): - """ - Return true if the sets are equal. - """ - return Polyhedron([left - right], []) - -@_polymorphic -def Ne(left, right): - """ - Return true if the sets are NOT equal. - """ - return ~Eq(left, right) - -@_polymorphic -def Gt(left, right): - """ - Return true if the first set is greater than the second set. - """ - return Polyhedron([], [left - right - 1]) - -@_polymorphic -def Ge(left, right): - """ - Return true if the first set is greater than or equal the second set. - """ - return Polyhedron([], [left - right]) -- 2.20.1