Cleaner implementation of Domain.__sub__()
[linpy.git] / linpy / domains.py
1 # Copyright 2014 MINES ParisTech
2 #
3 # This file is part of LinPy.
4 #
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
9 #
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
17
18 import ast
19 import functools
20 import re
21 import math
22
23 from fractions import Fraction
24
25 from . import islhelper
26 from .islhelper import mainctx, libisl
27 from .linexprs import LinExpr, Symbol, Rational
28 from .geometry import GeometricObject, Point, Vector
29
30
31 __all__ = [
32 'Domain',
33 'And', 'Or', 'Not',
34 ]
35
36
37 @functools.total_ordering
38 class Domain(GeometricObject):
39 """
40 A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
41 computation of union and complementary operations.
42
43 A domain with a unique polyhedron is automatically subclassed as a
44 Polyhedron instance.
45 """
46
47 __slots__ = (
48 '_polyhedra',
49 '_symbols',
50 '_dimension',
51 )
52
53 def __new__(cls, *polyhedra):
54 """
55 Return a domain from a sequence of polyhedra.
56
57 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
58 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
59 >>> dom = Domain([square, square2])
60
61 It is also possible to build domains from polyhedra using arithmetic
62 operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
63 using one of the following instructions:
64
65 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
66 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
67 >>> dom = square | square2
68 >>> dom = Or(square, square2)
69
70 Alternatively, a domain can be built from a string:
71
72 >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
73
74 Finally, a domain can be built from a GeometricObject instance, calling
75 the GeometricObject.asdomain() method.
76 """
77 from .polyhedra import Polyhedron
78 if len(polyhedra) == 1:
79 argument = polyhedra[0]
80 if isinstance(argument, str):
81 return cls.fromstring(argument)
82 elif isinstance(argument, GeometricObject):
83 return argument.aspolyhedron()
84 else:
85 raise TypeError('argument must be a string '
86 'or a GeometricObject instance')
87 else:
88 for polyhedron in polyhedra:
89 if not isinstance(polyhedron, Polyhedron):
90 raise TypeError('arguments must be Polyhedron instances')
91 symbols = cls._xsymbols(polyhedra)
92 islset = cls._toislset(polyhedra, symbols)
93 return cls._fromislset(islset, symbols)
94
95 @classmethod
96 def _xsymbols(cls, iterator):
97 """
98 Return the ordered tuple of symbols present in iterator.
99 """
100 symbols = set()
101 for item in iterator:
102 symbols.update(item.symbols)
103 return tuple(sorted(symbols, key=Symbol.sortkey))
104
105 @property
106 def polyhedra(self):
107 """
108 The tuple of polyhedra present in the domain.
109 """
110 return self._polyhedra
111
112 @property
113 def symbols(self):
114 """
115 The tuple of symbols present in the domain equations, sorted according
116 to Symbol.sortkey().
117 """
118 return self._symbols
119
120 @property
121 def dimension(self):
122 """
123 The dimension of the domain, i.e. the number of symbols present in it.
124 """
125 return self._dimension
126
127 def isempty(self):
128 """
129 Return True if the domain is empty, that is, equal to Empty.
130 """
131 islset = self._toislset(self.polyhedra, self.symbols)
132 empty = bool(libisl.isl_set_is_empty(islset))
133 libisl.isl_set_free(islset)
134 return empty
135
136 def __bool__(self):
137 """
138 Return True if the domain is non-empty.
139 """
140 return not self.isempty()
141
142 def isuniverse(self):
143 """
144 Return True if the domain is universal, that is, equal to Universe.
145 """
146 islset = self._toislset(self.polyhedra, self.symbols)
147 universe = bool(libisl.isl_set_plain_is_universe(islset))
148 libisl.isl_set_free(islset)
149 return universe
150
151 def isbounded(self):
152 """
153 Return True if the domain is bounded.
154 """
155 islset = self._toislset(self.polyhedra, self.symbols)
156 bounded = bool(libisl.isl_set_is_bounded(islset))
157 libisl.isl_set_free(islset)
158 return bounded
159
160 def __eq__(self, other):
161 """
162 Return True if two domains are equal.
163 """
164 if isinstance(other, Domain):
165 symbols = self._xsymbols([self, other])
166 islset1 = self._toislset(self.polyhedra, symbols)
167 islset2 = other._toislset(other.polyhedra, symbols)
168 equal = bool(libisl.isl_set_is_equal(islset1, islset2))
169 libisl.isl_set_free(islset1)
170 libisl.isl_set_free(islset2)
171 return equal
172 return NotImplemented
173
174 def isdisjoint(self, other):
175 """
176 Return True if two domains have a null intersection.
177 """
178 if not isinstance(other, Domain):
179 raise TypeError('other must be a Domain instance')
180 symbols = self._xsymbols([self, other])
181 islset1 = self._toislset(self.polyhedra, symbols)
182 islset2 = self._toislset(other.polyhedra, symbols)
183 equal = bool(libisl.isl_set_is_disjoint(islset1, islset2))
184 libisl.isl_set_free(islset1)
185 libisl.isl_set_free(islset2)
186 return equal
187
188 def issubset(self, other):
189 """
190 Report whether another domain contains the domain.
191 """
192 return self < other
193
194 def __le__(self, other):
195 if isinstance(other, Domain):
196 symbols = self._xsymbols([self, other])
197 islset1 = self._toislset(self.polyhedra, symbols)
198 islset2 = self._toislset(other.polyhedra, symbols)
199 equal = bool(libisl.isl_set_is_subset(islset1, islset2))
200 libisl.isl_set_free(islset1)
201 libisl.isl_set_free(islset2)
202 return equal
203 return NotImplemented
204 __le__.__doc__ = issubset.__doc__
205
206 def __lt__(self, other):
207 """
208 Report whether another domain is contained within the domain.
209 """
210 if isinstance(other, Domain):
211 symbols = self._xsymbols([self, other])
212 islset1 = self._toislset(self.polyhedra, symbols)
213 islset2 = self._toislset(other.polyhedra, symbols)
214 equal = bool(libisl.isl_set_is_strict_subset(islset1, islset2))
215 libisl.isl_set_free(islset1)
216 libisl.isl_set_free(islset2)
217 return equal
218 return NotImplemented
219
220 def complement(self):
221 """
222 Return the complementary domain of the domain.
223 """
224 islset = self._toislset(self.polyhedra, self.symbols)
225 islset = libisl.isl_set_complement(islset)
226 return self._fromislset(islset, self.symbols)
227
228 def __invert__(self):
229 return self.complement()
230 __invert__.__doc__ = complement.__doc__
231
232 def make_disjoint(self):
233 """
234 Return an equivalent domain, whose polyhedra are disjoint.
235 """
236 islset = self._toislset(self.polyhedra, self.symbols)
237 islset = libisl.isl_set_make_disjoint(mainctx, islset)
238 return self._fromislset(islset, self.symbols)
239
240 def coalesce(self):
241 """
242 Simplify the representation of the domain by trying to combine pairs of
243 polyhedra into a single polyhedron, and return the resulting domain.
244 """
245 islset = self._toislset(self.polyhedra, self.symbols)
246 islset = libisl.isl_set_coalesce(islset)
247 return self._fromislset(islset, self.symbols)
248
249 def detect_equalities(self):
250 """
251 Simplify the representation of the domain by detecting implicit
252 equalities, and return the resulting domain.
253 """
254 islset = self._toislset(self.polyhedra, self.symbols)
255 islset = libisl.isl_set_detect_equalities(islset)
256 return self._fromislset(islset, self.symbols)
257
258 def remove_redundancies(self):
259 """
260 Remove redundant constraints in the domain, and return the resulting
261 domain.
262 """
263 islset = self._toislset(self.polyhedra, self.symbols)
264 islset = libisl.isl_set_remove_redundancies(islset)
265 return self._fromislset(islset, self.symbols)
266
267 def aspolyhedron(self):
268 from .polyhedra import Polyhedron
269 islset = self._toislset(self.polyhedra, self.symbols)
270 islbset = libisl.isl_set_polyhedral_hull(islset)
271 return Polyhedron._fromislbasicset(islbset, self.symbols)
272
273 def asdomain(self):
274 return self
275
276 def project(self, symbols):
277 """
278 Project out the sequence of symbols given in arguments, and return the
279 resulting domain.
280 """
281 symbols = list(symbols)
282 for symbol in symbols:
283 if not isinstance(symbol, Symbol):
284 raise TypeError('symbols must be Symbol instances')
285 islset = self._toislset(self.polyhedra, self.symbols)
286 n = 0
287 for index, symbol in reversed(list(enumerate(self.symbols))):
288 if symbol in symbols:
289 n += 1
290 elif n > 0:
291 islset = libisl.isl_set_project_out(islset,
292 libisl.isl_dim_set, index + 1, n)
293 n = 0
294 if n > 0:
295 islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
296 symbols = [symbol for symbol in self.symbols if symbol not in symbols]
297 return Domain._fromislset(islset, symbols)
298
299 def sample(self):
300 """
301 Return a sample of the domain, as an integer instance of Point. If the
302 domain is empty, a ValueError exception is raised.
303 """
304 islset = self._toislset(self.polyhedra, self.symbols)
305 islpoint = libisl.isl_set_sample_point(islset)
306 if bool(libisl.isl_point_is_void(islpoint)):
307 libisl.isl_point_free(islpoint)
308 raise ValueError('domain must be non-empty')
309 point = {}
310 for index, symbol in enumerate(self.symbols):
311 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
312 libisl.isl_dim_set, index)
313 coordinate = islhelper.isl_val_to_int(coordinate)
314 point[symbol] = coordinate
315 libisl.isl_point_free(islpoint)
316 return point
317
318 def intersection(self, *others):
319 """
320 Return the intersection of two or more domains as a new domain. As an
321 alternative, function And() can be used.
322 """
323 result = self
324 for other in others:
325 result &= other
326 return result
327
328 def __and__(self, other):
329 if isinstance(other, Domain):
330 symbols = self._xsymbols([self, other])
331 islset1 = self._toislset(self.polyhedra, symbols)
332 islset2 = other._toislset(other.polyhedra, symbols)
333 islset = libisl.isl_set_intersect(islset1, islset2)
334 return self._fromislset(islset, symbols)
335 return NotImplemented
336 __and__.__doc__ = intersection.__doc__
337
338 def union(self, *others):
339 """
340 Return the union of two or more domains as a new domain. As an
341 alternative, function Or() can be used.
342 """
343 result = self
344 for other in others:
345 result |= other
346 return result
347
348 def __or__(self, other):
349 if isinstance(other, Domain):
350 symbols = self._xsymbols([self, other])
351 islset1 = self._toislset(self.polyhedra, symbols)
352 islset2 = other._toislset(other.polyhedra, symbols)
353 islset = libisl.isl_set_union(islset1, islset2)
354 return self._fromislset(islset, symbols)
355 return NotImplemented
356 __or__.__doc__ = union.__doc__
357
358 def __add__(self, other):
359 return self | other
360 __add__.__doc__ = union.__doc__
361
362 def difference(self, other):
363 """
364 Return the difference of two domains as a new domain.
365 """
366 return self - other
367
368 def __sub__(self, other):
369 if isinstance(other, Domain):
370 symbols = self._xsymbols([self, other])
371 islset1 = self._toislset(self.polyhedra, symbols)
372 islset2 = other._toislset(other.polyhedra, symbols)
373 islset = libisl.isl_set_subtract(islset1, islset2)
374 return self._fromislset(islset, symbols)
375 return NotImplemented
376 __sub__.__doc__ = difference.__doc__
377
378 def lexmin(self):
379 """
380 Return the lexicographic minimum of the elements in the domain.
381 """
382 islset = self._toislset(self.polyhedra, self.symbols)
383 islset = libisl.isl_set_lexmin(islset)
384 return self._fromislset(islset, self.symbols)
385
386 def lexmax(self):
387 """
388 Return the lexicographic maximum of the elements in the domain.
389 """
390 islset = self._toislset(self.polyhedra, self.symbols)
391 islset = libisl.isl_set_lexmax(islset)
392 return self._fromislset(islset, self.symbols)
393
394 _RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
395
396 def vertices(self):
397 """
398 Return the vertices of the domain, as a list of rational instances of
399 Point.
400 """
401 from .polyhedra import Polyhedron
402 if not self.isbounded():
403 raise ValueError('domain must be bounded')
404 islbset = self._toislbasicset(self.equalities, self.inequalities,
405 self.symbols)
406 vertices = libisl.isl_basic_set_compute_vertices(islbset);
407 vertices = islhelper.isl_vertices_vertices(vertices)
408 points = []
409 for vertex in vertices:
410 expr = libisl.isl_vertex_get_expr(vertex)
411 coordinates = []
412 if islhelper.isl_version < '0.13':
413 constraints = islhelper.isl_basic_set_constraints(expr)
414 for constraint in constraints:
415 constant = libisl.isl_constraint_get_constant_val(constraint)
416 constant = islhelper.isl_val_to_int(constant)
417 for index, symbol in enumerate(self.symbols):
418 coefficient = libisl.isl_constraint_get_coefficient_val(constraint,
419 libisl.isl_dim_set, index)
420 coefficient = islhelper.isl_val_to_int(coefficient)
421 if coefficient != 0:
422 coordinate = -Fraction(constant, coefficient)
423 coordinates.append((symbol, coordinate))
424 else:
425 string = islhelper.isl_multi_aff_to_str(expr)
426 matches = self._RE_COORDINATE.finditer(string)
427 for symbol, match in zip(self.symbols, matches):
428 numerator = int(match.group('num'))
429 denominator = match.group('den')
430 denominator = 1 if denominator is None else int(denominator)
431 coordinate = Fraction(numerator, denominator)
432 coordinates.append((symbol, coordinate))
433 points.append(Point(coordinates))
434 return points
435
436 def points(self):
437 """
438 Return the integer points of a bounded domain, as a list of integer
439 instances of Point. If the domain is not bounded, a ValueError exception
440 is raised.
441 """
442 if not self.isbounded():
443 raise ValueError('domain must be bounded')
444 from .polyhedra import Universe, Eq
445 islset = self._toislset(self.polyhedra, self.symbols)
446 islpoints = islhelper.isl_set_points(islset)
447 points = []
448 for islpoint in islpoints:
449 coordinates = {}
450 for index, symbol in enumerate(self.symbols):
451 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
452 libisl.isl_dim_set, index)
453 coordinate = islhelper.isl_val_to_int(coordinate)
454 coordinates[symbol] = coordinate
455 points.append(Point(coordinates))
456 return points
457
458 def __contains__(self, point):
459 """
460 Return True if the point if contained within the domain.
461 """
462 for polyhedron in self.polyhedra:
463 if point in polyhedron:
464 return True
465 return False
466
467 @classmethod
468 def _polygon_inner_point(cls, points):
469 symbols = points[0].symbols
470 coordinates = {symbol: 0 for symbol in symbols}
471 for point in points:
472 for symbol, coordinate in point.coordinates():
473 coordinates[symbol] += coordinate
474 for symbol in symbols:
475 coordinates[symbol] /= len(points)
476 return Point(coordinates)
477
478 @classmethod
479 def _sort_polygon_2d(cls, points):
480 if len(points) <= 3:
481 return points
482 o = cls._polygon_inner_point(points)
483 angles = {}
484 for m in points:
485 om = Vector(o, m)
486 dx, dy = (coordinate for symbol, coordinate in om.coordinates())
487 angle = math.atan2(dy, dx)
488 angles[m] = angle
489 return sorted(points, key=angles.get)
490
491 @classmethod
492 def _sort_polygon_3d(cls, points):
493 if len(points) <= 3:
494 return points
495 o = cls._polygon_inner_point(points)
496 a = points[0]
497 oa = Vector(o, a)
498 norm_oa = oa.norm()
499 for b in points[1:]:
500 ob = Vector(o, b)
501 u = oa.cross(ob)
502 if not u.isnull():
503 u = u.asunit()
504 break
505 else:
506 raise ValueError('degenerate polygon')
507 angles = {a: 0.}
508 for m in points[1:]:
509 om = Vector(o, m)
510 normprod = norm_oa * om.norm()
511 cosinus = max(oa.dot(om) / normprod, -1.)
512 sinus = u.dot(oa.cross(om)) / normprod
513 angle = math.acos(cosinus)
514 angle = math.copysign(angle, sinus)
515 angles[m] = angle
516 return sorted(points, key=angles.get)
517
518 def faces(self):
519 """
520 Return the list of faces of a bounded domain. Each face is represented
521 by a list of vertices, in the form of rational instances of Point. If
522 the domain is not bounded, a ValueError exception is raised.
523 """
524 faces = []
525 for polyhedron in self.polyhedra:
526 vertices = polyhedron.vertices()
527 for constraint in polyhedron.constraints:
528 face = []
529 for vertex in vertices:
530 if constraint.subs(vertex.coordinates()) == 0:
531 face.append(vertex)
532 if len(face) >= 3:
533 faces.append(face)
534 return faces
535
536 def _plot_2d(self, plot=None, **kwargs):
537 import matplotlib.pyplot as plt
538 from matplotlib.patches import Polygon
539 if plot is None:
540 fig = plt.figure()
541 plot = fig.add_subplot(1, 1, 1)
542 xmin, xmax = plot.get_xlim()
543 ymin, ymax = plot.get_ylim()
544 for polyhedron in self.polyhedra:
545 vertices = polyhedron._sort_polygon_2d(polyhedron.vertices())
546 xys = [tuple(vertex.values()) for vertex in vertices]
547 xs, ys = zip(*xys)
548 xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
549 ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
550 plot.add_patch(Polygon(xys, closed=True, **kwargs))
551 plot.set_xlim(xmin, xmax)
552 plot.set_ylim(ymin, ymax)
553 return plot
554
555 def _plot_3d(self, plot=None, **kwargs):
556 import matplotlib.pyplot as plt
557 from mpl_toolkits.mplot3d import Axes3D
558 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
559 if plot is None:
560 fig = plt.figure()
561 axes = Axes3D(fig)
562 else:
563 axes = plot
564 xmin, xmax = axes.get_xlim()
565 ymin, ymax = axes.get_ylim()
566 zmin, zmax = axes.get_zlim()
567 poly_xyzs = []
568 for vertices in self.faces():
569 vertices = self._sort_polygon_3d(vertices)
570 vertices.append(vertices[0])
571 face_xyzs = [tuple(vertex.values()) for vertex in vertices]
572 xs, ys, zs = zip(*face_xyzs)
573 xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
574 ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
575 zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
576 poly_xyzs.append(face_xyzs)
577 collection = Poly3DCollection(poly_xyzs, **kwargs)
578 axes.add_collection3d(collection)
579 axes.set_xlim(xmin, xmax)
580 axes.set_ylim(ymin, ymax)
581 axes.set_zlim(zmin, zmax)
582 return axes
583
584 def plot(self, plot=None, **kwargs):
585 """
586 Plot a 2D or 3D domain using matplotlib. Draw it to the current plot
587 object if present, otherwise create a new one. options are keyword
588 arguments passed to the matplotlib drawing functions, they can be used
589 to set the drawing color for example. Raise ValueError is the domain is
590 not 2D or 3D.
591 """
592 if not self.isbounded():
593 raise ValueError('domain must be bounded')
594 elif self.dimension == 2:
595 return self._plot_2d(plot=plot, **kwargs)
596 elif self.dimension == 3:
597 return self._plot_3d(plot=plot, **kwargs)
598 else:
599 raise ValueError('polyhedron must be 2 or 3-dimensional')
600
601 def subs(self, symbol, expression=None):
602 """
603 Substitute the given symbol by an expression in the domain constraints.
604 To perform multiple substitutions at once, pass a sequence or a
605 dictionary of (old, new) pairs to subs. The syntax of this function is
606 similar to LinExpr.subs().
607 """
608 polyhedra = [polyhedron.subs(symbol, expression)
609 for polyhedron in self.polyhedra]
610 return Domain(*polyhedra)
611
612 @classmethod
613 def _fromislset(cls, islset, symbols):
614 from .polyhedra import Polyhedron
615 islset = libisl.isl_set_remove_divs(islset)
616 islbsets = islhelper.isl_set_basic_sets(islset)
617 libisl.isl_set_free(islset)
618 polyhedra = []
619 for islbset in islbsets:
620 polyhedron = Polyhedron._fromislbasicset(islbset, symbols)
621 polyhedra.append(polyhedron)
622 if len(polyhedra) == 0:
623 from .polyhedra import Empty
624 return Empty
625 elif len(polyhedra) == 1:
626 return polyhedra[0]
627 else:
628 self = object().__new__(Domain)
629 self._polyhedra = tuple(polyhedra)
630 self._symbols = cls._xsymbols(polyhedra)
631 self._dimension = len(self._symbols)
632 return self
633
634 @classmethod
635 def _toislset(cls, polyhedra, symbols):
636 polyhedron = polyhedra[0]
637 islbset = polyhedron._toislbasicset(polyhedron.equalities,
638 polyhedron.inequalities, symbols)
639 islset1 = libisl.isl_set_from_basic_set(islbset)
640 for polyhedron in polyhedra[1:]:
641 islbset = polyhedron._toislbasicset(polyhedron.equalities,
642 polyhedron.inequalities, symbols)
643 islset2 = libisl.isl_set_from_basic_set(islbset)
644 islset1 = libisl.isl_set_union(islset1, islset2)
645 return islset1
646
647 @classmethod
648 def _fromast(cls, node):
649 from .polyhedra import Polyhedron
650 if isinstance(node, ast.Module) and len(node.body) == 1:
651 return cls._fromast(node.body[0])
652 elif isinstance(node, ast.Expr):
653 return cls._fromast(node.value)
654 elif isinstance(node, ast.UnaryOp):
655 domain = cls._fromast(node.operand)
656 if isinstance(node.operand, ast.invert):
657 return Not(domain)
658 elif isinstance(node, ast.BinOp):
659 domain1 = cls._fromast(node.left)
660 domain2 = cls._fromast(node.right)
661 if isinstance(node.op, ast.BitAnd):
662 return And(domain1, domain2)
663 elif isinstance(node.op, ast.BitOr):
664 return Or(domain1, domain2)
665 elif isinstance(node, ast.Compare):
666 equalities = []
667 inequalities = []
668 left = LinExpr._fromast(node.left)
669 for i in range(len(node.ops)):
670 op = node.ops[i]
671 right = LinExpr._fromast(node.comparators[i])
672 if isinstance(op, ast.Lt):
673 inequalities.append(right - left - 1)
674 elif isinstance(op, ast.LtE):
675 inequalities.append(right - left)
676 elif isinstance(op, ast.Eq):
677 equalities.append(left - right)
678 elif isinstance(op, ast.GtE):
679 inequalities.append(left - right)
680 elif isinstance(op, ast.Gt):
681 inequalities.append(left - right - 1)
682 else:
683 break
684 left = right
685 else:
686 return Polyhedron(equalities, inequalities)
687 raise SyntaxError('invalid syntax')
688
689 _RE_BRACES = re.compile(r'^\{\s*|\s*\}$')
690 _RE_EQ = re.compile(r'([^<=>])=([^<=>])')
691 _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩')
692 _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪')
693 _RE_NOT = re.compile(r'\bnot\b|!|¬')
694 _RE_NUM_VAR = LinExpr._RE_NUM_VAR
695 _RE_OPERATORS = re.compile(r'(&|\||~)')
696
697 @classmethod
698 def fromstring(cls, string):
699 """
700 Create a domain from a string. Raise SyntaxError if the string is not
701 properly formatted.
702 """
703 # remove curly brackets
704 string = cls._RE_BRACES.sub(r'', string)
705 # replace '=' by '=='
706 string = cls._RE_EQ.sub(r'\1==\2', string)
707 # replace 'and', 'or', 'not'
708 string = cls._RE_AND.sub(r' & ', string)
709 string = cls._RE_OR.sub(r' | ', string)
710 string = cls._RE_NOT.sub(r' ~', string)
711 # add implicit multiplication operators, e.g. '5x' -> '5*x'
712 string = cls._RE_NUM_VAR.sub(r'\1*\2', string)
713 # add parentheses to force precedence
714 tokens = cls._RE_OPERATORS.split(string)
715 for i, token in enumerate(tokens):
716 if i % 2 == 0:
717 token = '({})'.format(token)
718 tokens[i] = token
719 string = ''.join(tokens)
720 tree = ast.parse(string, 'eval')
721 return cls._fromast(tree)
722
723 def __repr__(self):
724 assert len(self.polyhedra) >= 2
725 strings = [repr(polyhedron) for polyhedron in self.polyhedra]
726 return 'Or({})'.format(', '.join(strings))
727
728 def _repr_latex_(self):
729 strings = []
730 for polyhedron in self.polyhedra:
731 strings.append('({})'.format(polyhedron._repr_latex_().strip('$')))
732 return '${}$'.format(' \\vee '.join(strings))
733
734 @classmethod
735 def fromsympy(cls, expr):
736 """
737 Create a domain from a sympy expression.
738 """
739 import sympy
740 from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
741 funcmap = {
742 sympy.And: And, sympy.Or: Or, sympy.Not: Not,
743 sympy.Lt: Lt, sympy.Le: Le,
744 sympy.Eq: Eq, sympy.Ne: Ne,
745 sympy.Ge: Ge, sympy.Gt: Gt,
746 }
747 if expr.func in funcmap:
748 args = [Domain.fromsympy(arg) for arg in expr.args]
749 return funcmap[expr.func](*args)
750 elif isinstance(expr, sympy.Expr):
751 return LinExpr.fromsympy(expr)
752 raise ValueError('non-domain expression: {!r}'.format(expr))
753
754 def tosympy(self):
755 """
756 Convert the domain to a sympy expression.
757 """
758 import sympy
759 polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
760 return sympy.Or(*polyhedra)
761
762
763 def And(*domains):
764 """
765 Create the intersection domain of the domains given in arguments.
766 """
767 if len(domains) == 0:
768 from .polyhedra import Universe
769 return Universe
770 else:
771 return domains[0].intersection(*domains[1:])
772 And.__doc__ = Domain.intersection.__doc__
773
774 def Or(*domains):
775 """
776 Create the union domain of the domains given in arguments.
777 """
778 if len(domains) == 0:
779 from .polyhedra import Empty
780 return Empty
781 else:
782 return domains[0].union(*domains[1:])
783 Or.__doc__ = Domain.union.__doc__
784
785 def Not(domain):
786 """
787 Create the complementary domain of the domain given in argument.
788 """
789 return ~domain
790 Not.__doc__ = Domain.complement.__doc__