Check argument type in Domain.project()
[linpy.git] / linpy / domains.py
1 # Copyright 2014 MINES ParisTech
2 #
3 # This file is part of LinPy.
4 #
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
9 #
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
14 #
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
17
18 import ast
19 import functools
20 import re
21 import math
22
23 from fractions import Fraction
24
25 from . import islhelper
26 from .islhelper import mainctx, libisl
27 from .linexprs import LinExpr, Symbol, Rational
28 from .geometry import GeometricObject, Point, Vector
29
30
31 __all__ = [
32 'Domain',
33 'And', 'Or', 'Not',
34 ]
35
36
37 @functools.total_ordering
38 class Domain(GeometricObject):
39 """
40 A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
41 computation of union and complementary operations.
42
43 A domain with a unique polyhedron is automatically subclassed as a
44 Polyhedron instance.
45 """
46
47 __slots__ = (
48 '_polyhedra',
49 '_symbols',
50 '_dimension',
51 )
52
53 def __new__(cls, *polyhedra):
54 """
55 Return a domain from a sequence of polyhedra.
56
57 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
58 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
59 >>> dom = Domain([square, square2])
60
61 It is also possible to build domains from polyhedra using arithmetic
62 operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
63 using one of the following instructions:
64
65 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
66 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
67 >>> dom = square | square2
68 >>> dom = Or(square, square2)
69
70 Alternatively, a domain can be built from a string:
71
72 >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
73
74 Finally, a domain can be built from a GeometricObject instance, calling
75 the GeometricObject.asdomain() method.
76 """
77 from .polyhedra import Polyhedron
78 if len(polyhedra) == 1:
79 argument = polyhedra[0]
80 if isinstance(argument, str):
81 return cls.fromstring(argument)
82 elif isinstance(argument, GeometricObject):
83 return argument.aspolyhedron()
84 else:
85 raise TypeError('argument must be a string '
86 'or a GeometricObject instance')
87 else:
88 for polyhedron in polyhedra:
89 if not isinstance(polyhedron, Polyhedron):
90 raise TypeError('arguments must be Polyhedron instances')
91 symbols = cls._xsymbols(polyhedra)
92 islset = cls._toislset(polyhedra, symbols)
93 return cls._fromislset(islset, symbols)
94
95 @classmethod
96 def _xsymbols(cls, iterator):
97 """
98 Return the ordered tuple of symbols present in iterator.
99 """
100 symbols = set()
101 for item in iterator:
102 symbols.update(item.symbols)
103 return tuple(sorted(symbols, key=Symbol.sortkey))
104
105 @property
106 def polyhedra(self):
107 """
108 The tuple of polyhedra present in the domain.
109 """
110 return self._polyhedra
111
112 @property
113 def symbols(self):
114 """
115 The tuple of symbols present in the domain equations, sorted according
116 to Symbol.sortkey().
117 """
118 return self._symbols
119
120 @property
121 def dimension(self):
122 """
123 The dimension of the domain, i.e. the number of symbols present in it.
124 """
125 return self._dimension
126
127 def isempty(self):
128 """
129 Return True if the domain is empty, that is, equal to Empty.
130 """
131 islset = self._toislset(self.polyhedra, self.symbols)
132 empty = bool(libisl.isl_set_is_empty(islset))
133 libisl.isl_set_free(islset)
134 return empty
135
136 def __bool__(self):
137 """
138 Return True if the domain is non-empty.
139 """
140 return not self.isempty()
141
142 def isuniverse(self):
143 """
144 Return True if the domain is universal, that is, equal to Universe.
145 """
146 islset = self._toislset(self.polyhedra, self.symbols)
147 universe = bool(libisl.isl_set_plain_is_universe(islset))
148 libisl.isl_set_free(islset)
149 return universe
150
151 def isbounded(self):
152 """
153 Return True if the domain is bounded.
154 """
155 islset = self._toislset(self.polyhedra, self.symbols)
156 bounded = bool(libisl.isl_set_is_bounded(islset))
157 libisl.isl_set_free(islset)
158 return bounded
159
160 def __eq__(self, other):
161 """
162 Return True if two domains are equal.
163 """
164 if isinstance(other, Domain):
165 symbols = self._xsymbols([self, other])
166 islset1 = self._toislset(self.polyhedra, symbols)
167 islset2 = other._toislset(other.polyhedra, symbols)
168 equal = bool(libisl.isl_set_is_equal(islset1, islset2))
169 libisl.isl_set_free(islset1)
170 libisl.isl_set_free(islset2)
171 return equal
172 return NotImplemented
173
174 def isdisjoint(self, other):
175 """
176 Return True if two domains have a null intersection.
177 """
178 if not isinstance(other, Domain):
179 raise TypeError('other must be a Domain instance')
180 symbols = self._xsymbols([self, other])
181 islset1 = self._toislset(self.polyhedra, symbols)
182 islset2 = self._toislset(other.polyhedra, symbols)
183 equal = bool(libisl.isl_set_is_disjoint(islset1, islset2))
184 libisl.isl_set_free(islset1)
185 libisl.isl_set_free(islset2)
186 return equal
187
188 def issubset(self, other):
189 """
190 Report whether another domain contains the domain.
191 """
192 return self < other
193
194 def __le__(self, other):
195 if isinstance(other, Domain):
196 symbols = self._xsymbols([self, other])
197 islset1 = self._toislset(self.polyhedra, symbols)
198 islset2 = self._toislset(other.polyhedra, symbols)
199 equal = bool(libisl.isl_set_is_subset(islset1, islset2))
200 libisl.isl_set_free(islset1)
201 libisl.isl_set_free(islset2)
202 return equal
203 return NotImplemented
204 __le__.__doc__ = issubset.__doc__
205
206 def __lt__(self, other):
207 """
208 Report whether another domain is contained within the domain.
209 """
210 if isinstance(other, Domain):
211 symbols = self._xsymbols([self, other])
212 islset1 = self._toislset(self.polyhedra, symbols)
213 islset2 = self._toislset(other.polyhedra, symbols)
214 equal = bool(libisl.isl_set_is_strict_subset(islset1, islset2))
215 libisl.isl_set_free(islset1)
216 libisl.isl_set_free(islset2)
217 return equal
218 return NotImplemented
219
220 def complement(self):
221 """
222 Return the complementary domain of the domain.
223 """
224 islset = self._toislset(self.polyhedra, self.symbols)
225 islset = libisl.isl_set_complement(islset)
226 return self._fromislset(islset, self.symbols)
227
228 def __invert__(self):
229 return self.complement()
230 __invert__.__doc__ = complement.__doc__
231
232 def make_disjoint(self):
233 """
234 Return an equivalent domain, whose polyhedra are disjoint.
235 """
236 islset = self._toislset(self.polyhedra, self.symbols)
237 islset = libisl.isl_set_make_disjoint(mainctx, islset)
238 return self._fromislset(islset, self.symbols)
239
240 def coalesce(self):
241 """
242 Simplify the representation of the domain by trying to combine pairs of
243 polyhedra into a single polyhedron, and return the resulting domain.
244 """
245 islset = self._toislset(self.polyhedra, self.symbols)
246 islset = libisl.isl_set_coalesce(islset)
247 return self._fromislset(islset, self.symbols)
248
249 def detect_equalities(self):
250 """
251 Simplify the representation of the domain by detecting implicit
252 equalities, and return the resulting domain.
253 """
254 islset = self._toislset(self.polyhedra, self.symbols)
255 islset = libisl.isl_set_detect_equalities(islset)
256 return self._fromislset(islset, self.symbols)
257
258 def remove_redundancies(self):
259 """
260 Remove redundant constraints in the domain, and return the resulting
261 domain.
262 """
263 islset = self._toislset(self.polyhedra, self.symbols)
264 islset = libisl.isl_set_remove_redundancies(islset)
265 return self._fromislset(islset, self.symbols)
266
267 def aspolyhedron(self):
268 from .polyhedra import Polyhedron
269 islset = self._toislset(self.polyhedra, self.symbols)
270 islbset = libisl.isl_set_polyhedral_hull(islset)
271 return Polyhedron._fromislbasicset(islbset, self.symbols)
272
273 def asdomain(self):
274 return self
275
276 def project(self, symbols):
277 """
278 Project out the sequence of symbols given in arguments, and return the
279 resulting domain.
280 """
281 symbols = list(symbols)
282 for symbol in symbols:
283 if not isinstance(symbol, Symbol):
284 raise TypeError('symbols must be Symbol instances')
285 islset = self._toislset(self.polyhedra, self.symbols)
286 n = 0
287 for index, symbol in reversed(list(enumerate(self.symbols))):
288 if symbol in symbols:
289 n += 1
290 elif n > 0:
291 islset = libisl.isl_set_project_out(islset,
292 libisl.isl_dim_set, index + 1, n)
293 n = 0
294 if n > 0:
295 islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
296 symbols = [symbol for symbol in self.symbols if symbol not in symbols]
297 return Domain._fromislset(islset, symbols)
298
299 def sample(self):
300 """
301 Return a sample of the domain, as an integer instance of Point. If the
302 domain is empty, a ValueError exception is raised.
303 """
304 islset = self._toislset(self.polyhedra, self.symbols)
305 islpoint = libisl.isl_set_sample_point(islset)
306 if bool(libisl.isl_point_is_void(islpoint)):
307 libisl.isl_point_free(islpoint)
308 raise ValueError('domain must be non-empty')
309 point = {}
310 for index, symbol in enumerate(self.symbols):
311 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
312 libisl.isl_dim_set, index)
313 coordinate = islhelper.isl_val_to_int(coordinate)
314 point[symbol] = coordinate
315 libisl.isl_point_free(islpoint)
316 return point
317
318 def intersection(self, *others):
319 """
320 Return the intersection of two or more domains as a new domain. As an
321 alternative, function And() can be used.
322 """
323 if len(others) == 0:
324 return self
325 symbols = self._xsymbols((self,) + others)
326 islset1 = self._toislset(self.polyhedra, symbols)
327 for other in others:
328 islset2 = other._toislset(other.polyhedra, symbols)
329 islset1 = libisl.isl_set_intersect(islset1, islset2)
330 return self._fromislset(islset1, symbols)
331
332 def __and__(self, other):
333 return self.intersection(other)
334 __and__.__doc__ = intersection.__doc__
335
336 def union(self, *others):
337 """
338 Return the union of two or more domains as a new domain. As an
339 alternative, function Or() can be used.
340 """
341 if len(others) == 0:
342 return self
343 symbols = self._xsymbols((self,) + others)
344 islset1 = self._toislset(self.polyhedra, symbols)
345 for other in others:
346 islset2 = other._toislset(other.polyhedra, symbols)
347 islset1 = libisl.isl_set_union(islset1, islset2)
348 return self._fromislset(islset1, symbols)
349
350 def __or__(self, other):
351 return self.union(other)
352 __or__.__doc__ = union.__doc__
353
354 def __add__(self, other):
355 return self.union(other)
356 __add__.__doc__ = union.__doc__
357
358 def difference(self, other):
359 """
360 Return the difference of two domains as a new domain.
361 """
362 symbols = self._xsymbols([self, other])
363 islset1 = self._toislset(self.polyhedra, symbols)
364 islset2 = other._toislset(other.polyhedra, symbols)
365 islset = libisl.isl_set_subtract(islset1, islset2)
366 return self._fromislset(islset, symbols)
367
368 def __sub__(self, other):
369 return self.difference(other)
370 __sub__.__doc__ = difference.__doc__
371
372 def lexmin(self):
373 """
374 Return the lexicographic minimum of the elements in the domain.
375 """
376 islset = self._toislset(self.polyhedra, self.symbols)
377 islset = libisl.isl_set_lexmin(islset)
378 return self._fromislset(islset, self.symbols)
379
380 def lexmax(self):
381 """
382 Return the lexicographic maximum of the elements in the domain.
383 """
384 islset = self._toislset(self.polyhedra, self.symbols)
385 islset = libisl.isl_set_lexmax(islset)
386 return self._fromislset(islset, self.symbols)
387
388 _RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
389
390 def vertices(self):
391 """
392 Return the vertices of the domain, as a list of rational instances of
393 Point.
394 """
395 from .polyhedra import Polyhedron
396 if not self.isbounded():
397 raise ValueError('domain must be bounded')
398 islbset = self._toislbasicset(self.equalities, self.inequalities,
399 self.symbols)
400 vertices = libisl.isl_basic_set_compute_vertices(islbset);
401 vertices = islhelper.isl_vertices_vertices(vertices)
402 points = []
403 for vertex in vertices:
404 expr = libisl.isl_vertex_get_expr(vertex)
405 coordinates = []
406 if islhelper.isl_version < '0.13':
407 constraints = islhelper.isl_basic_set_constraints(expr)
408 for constraint in constraints:
409 constant = libisl.isl_constraint_get_constant_val(constraint)
410 constant = islhelper.isl_val_to_int(constant)
411 for index, symbol in enumerate(self.symbols):
412 coefficient = libisl.isl_constraint_get_coefficient_val(constraint,
413 libisl.isl_dim_set, index)
414 coefficient = islhelper.isl_val_to_int(coefficient)
415 if coefficient != 0:
416 coordinate = -Fraction(constant, coefficient)
417 coordinates.append((symbol, coordinate))
418 else:
419 string = islhelper.isl_multi_aff_to_str(expr)
420 matches = self._RE_COORDINATE.finditer(string)
421 for symbol, match in zip(self.symbols, matches):
422 numerator = int(match.group('num'))
423 denominator = match.group('den')
424 denominator = 1 if denominator is None else int(denominator)
425 coordinate = Fraction(numerator, denominator)
426 coordinates.append((symbol, coordinate))
427 points.append(Point(coordinates))
428 return points
429
430 def points(self):
431 """
432 Return the integer points of a bounded domain, as a list of integer
433 instances of Point. If the domain is not bounded, a ValueError exception
434 is raised.
435 """
436 if not self.isbounded():
437 raise ValueError('domain must be bounded')
438 from .polyhedra import Universe, Eq
439 islset = self._toislset(self.polyhedra, self.symbols)
440 islpoints = islhelper.isl_set_points(islset)
441 points = []
442 for islpoint in islpoints:
443 coordinates = {}
444 for index, symbol in enumerate(self.symbols):
445 coordinate = libisl.isl_point_get_coordinate_val(islpoint,
446 libisl.isl_dim_set, index)
447 coordinate = islhelper.isl_val_to_int(coordinate)
448 coordinates[symbol] = coordinate
449 points.append(Point(coordinates))
450 return points
451
452 def __contains__(self, point):
453 """
454 Return True if the point if contained within the domain.
455 """
456 for polyhedron in self.polyhedra:
457 if point in polyhedron:
458 return True
459 return False
460
461 @classmethod
462 def _polygon_inner_point(cls, points):
463 symbols = points[0].symbols
464 coordinates = {symbol: 0 for symbol in symbols}
465 for point in points:
466 for symbol, coordinate in point.coordinates():
467 coordinates[symbol] += coordinate
468 for symbol in symbols:
469 coordinates[symbol] /= len(points)
470 return Point(coordinates)
471
472 @classmethod
473 def _sort_polygon_2d(cls, points):
474 if len(points) <= 3:
475 return points
476 o = cls._polygon_inner_point(points)
477 angles = {}
478 for m in points:
479 om = Vector(o, m)
480 dx, dy = (coordinate for symbol, coordinate in om.coordinates())
481 angle = math.atan2(dy, dx)
482 angles[m] = angle
483 return sorted(points, key=angles.get)
484
485 @classmethod
486 def _sort_polygon_3d(cls, points):
487 if len(points) <= 3:
488 return points
489 o = cls._polygon_inner_point(points)
490 a = points[0]
491 oa = Vector(o, a)
492 norm_oa = oa.norm()
493 for b in points[1:]:
494 ob = Vector(o, b)
495 u = oa.cross(ob)
496 if not u.isnull():
497 u = u.asunit()
498 break
499 else:
500 raise ValueError('degenerate polygon')
501 angles = {a: 0.}
502 for m in points[1:]:
503 om = Vector(o, m)
504 normprod = norm_oa * om.norm()
505 cosinus = max(oa.dot(om) / normprod, -1.)
506 sinus = u.dot(oa.cross(om)) / normprod
507 angle = math.acos(cosinus)
508 angle = math.copysign(angle, sinus)
509 angles[m] = angle
510 return sorted(points, key=angles.get)
511
512 def faces(self):
513 """
514 Return the list of faces of a bounded domain. Each face is represented
515 by a list of vertices, in the form of rational instances of Point. If
516 the domain is not bounded, a ValueError exception is raised.
517 """
518 faces = []
519 for polyhedron in self.polyhedra:
520 vertices = polyhedron.vertices()
521 for constraint in polyhedron.constraints:
522 face = []
523 for vertex in vertices:
524 if constraint.subs(vertex.coordinates()) == 0:
525 face.append(vertex)
526 if len(face) >= 3:
527 faces.append(face)
528 return faces
529
530 def _plot_2d(self, plot=None, **kwargs):
531 import matplotlib.pyplot as plt
532 from matplotlib.patches import Polygon
533 if plot is None:
534 fig = plt.figure()
535 plot = fig.add_subplot(1, 1, 1)
536 xmin, xmax = plot.get_xlim()
537 ymin, ymax = plot.get_ylim()
538 for polyhedron in self.polyhedra:
539 vertices = polyhedron._sort_polygon_2d(polyhedron.vertices())
540 xys = [tuple(vertex.values()) for vertex in vertices]
541 xs, ys = zip(*xys)
542 xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
543 ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
544 plot.add_patch(Polygon(xys, closed=True, **kwargs))
545 plot.set_xlim(xmin, xmax)
546 plot.set_ylim(ymin, ymax)
547 return plot
548
549 def _plot_3d(self, plot=None, **kwargs):
550 import matplotlib.pyplot as plt
551 from mpl_toolkits.mplot3d import Axes3D
552 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
553 if plot is None:
554 fig = plt.figure()
555 axes = Axes3D(fig)
556 else:
557 axes = plot
558 xmin, xmax = axes.get_xlim()
559 ymin, ymax = axes.get_ylim()
560 zmin, zmax = axes.get_zlim()
561 poly_xyzs = []
562 for vertices in self.faces():
563 vertices = self._sort_polygon_3d(vertices)
564 vertices.append(vertices[0])
565 face_xyzs = [tuple(vertex.values()) for vertex in vertices]
566 xs, ys, zs = zip(*face_xyzs)
567 xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
568 ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
569 zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
570 poly_xyzs.append(face_xyzs)
571 collection = Poly3DCollection(poly_xyzs, **kwargs)
572 axes.add_collection3d(collection)
573 axes.set_xlim(xmin, xmax)
574 axes.set_ylim(ymin, ymax)
575 axes.set_zlim(zmin, zmax)
576 return axes
577
578 def plot(self, plot=None, **kwargs):
579 """
580 Plot a 2D or 3D domain using matplotlib. Draw it to the current plot
581 object if present, otherwise create a new one. options are keyword
582 arguments passed to the matplotlib drawing functions, they can be used
583 to set the drawing color for example. Raise ValueError is the domain is
584 not 2D or 3D.
585 """
586 if not self.isbounded():
587 raise ValueError('domain must be bounded')
588 elif self.dimension == 2:
589 return self._plot_2d(plot=plot, **kwargs)
590 elif self.dimension == 3:
591 return self._plot_3d(plot=plot, **kwargs)
592 else:
593 raise ValueError('polyhedron must be 2 or 3-dimensional')
594
595 def subs(self, symbol, expression=None):
596 """
597 Substitute the given symbol by an expression in the domain constraints.
598 To perform multiple substitutions at once, pass a sequence or a
599 dictionary of (old, new) pairs to subs. The syntax of this function is
600 similar to LinExpr.subs().
601 """
602 polyhedra = [polyhedron.subs(symbol, expression)
603 for polyhedron in self.polyhedra]
604 return Domain(*polyhedra)
605
606 @classmethod
607 def _fromislset(cls, islset, symbols):
608 from .polyhedra import Polyhedron
609 islset = libisl.isl_set_remove_divs(islset)
610 islbsets = islhelper.isl_set_basic_sets(islset)
611 libisl.isl_set_free(islset)
612 polyhedra = []
613 for islbset in islbsets:
614 polyhedron = Polyhedron._fromislbasicset(islbset, symbols)
615 polyhedra.append(polyhedron)
616 if len(polyhedra) == 0:
617 from .polyhedra import Empty
618 return Empty
619 elif len(polyhedra) == 1:
620 return polyhedra[0]
621 else:
622 self = object().__new__(Domain)
623 self._polyhedra = tuple(polyhedra)
624 self._symbols = cls._xsymbols(polyhedra)
625 self._dimension = len(self._symbols)
626 return self
627
628 @classmethod
629 def _toislset(cls, polyhedra, symbols):
630 polyhedron = polyhedra[0]
631 islbset = polyhedron._toislbasicset(polyhedron.equalities,
632 polyhedron.inequalities, symbols)
633 islset1 = libisl.isl_set_from_basic_set(islbset)
634 for polyhedron in polyhedra[1:]:
635 islbset = polyhedron._toislbasicset(polyhedron.equalities,
636 polyhedron.inequalities, symbols)
637 islset2 = libisl.isl_set_from_basic_set(islbset)
638 islset1 = libisl.isl_set_union(islset1, islset2)
639 return islset1
640
641 @classmethod
642 def _fromast(cls, node):
643 from .polyhedra import Polyhedron
644 if isinstance(node, ast.Module) and len(node.body) == 1:
645 return cls._fromast(node.body[0])
646 elif isinstance(node, ast.Expr):
647 return cls._fromast(node.value)
648 elif isinstance(node, ast.UnaryOp):
649 domain = cls._fromast(node.operand)
650 if isinstance(node.operand, ast.invert):
651 return Not(domain)
652 elif isinstance(node, ast.BinOp):
653 domain1 = cls._fromast(node.left)
654 domain2 = cls._fromast(node.right)
655 if isinstance(node.op, ast.BitAnd):
656 return And(domain1, domain2)
657 elif isinstance(node.op, ast.BitOr):
658 return Or(domain1, domain2)
659 elif isinstance(node, ast.Compare):
660 equalities = []
661 inequalities = []
662 left = LinExpr._fromast(node.left)
663 for i in range(len(node.ops)):
664 op = node.ops[i]
665 right = LinExpr._fromast(node.comparators[i])
666 if isinstance(op, ast.Lt):
667 inequalities.append(right - left - 1)
668 elif isinstance(op, ast.LtE):
669 inequalities.append(right - left)
670 elif isinstance(op, ast.Eq):
671 equalities.append(left - right)
672 elif isinstance(op, ast.GtE):
673 inequalities.append(left - right)
674 elif isinstance(op, ast.Gt):
675 inequalities.append(left - right - 1)
676 else:
677 break
678 left = right
679 else:
680 return Polyhedron(equalities, inequalities)
681 raise SyntaxError('invalid syntax')
682
683 _RE_BRACES = re.compile(r'^\{\s*|\s*\}$')
684 _RE_EQ = re.compile(r'([^<=>])=([^<=>])')
685 _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩')
686 _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪')
687 _RE_NOT = re.compile(r'\bnot\b|!|¬')
688 _RE_NUM_VAR = LinExpr._RE_NUM_VAR
689 _RE_OPERATORS = re.compile(r'(&|\||~)')
690
691 @classmethod
692 def fromstring(cls, string):
693 """
694 Create a domain from a string. Raise SyntaxError if the string is not
695 properly formatted.
696 """
697 # remove curly brackets
698 string = cls._RE_BRACES.sub(r'', string)
699 # replace '=' by '=='
700 string = cls._RE_EQ.sub(r'\1==\2', string)
701 # replace 'and', 'or', 'not'
702 string = cls._RE_AND.sub(r' & ', string)
703 string = cls._RE_OR.sub(r' | ', string)
704 string = cls._RE_NOT.sub(r' ~', string)
705 # add implicit multiplication operators, e.g. '5x' -> '5*x'
706 string = cls._RE_NUM_VAR.sub(r'\1*\2', string)
707 # add parentheses to force precedence
708 tokens = cls._RE_OPERATORS.split(string)
709 for i, token in enumerate(tokens):
710 if i % 2 == 0:
711 token = '({})'.format(token)
712 tokens[i] = token
713 string = ''.join(tokens)
714 tree = ast.parse(string, 'eval')
715 return cls._fromast(tree)
716
717 def __repr__(self):
718 assert len(self.polyhedra) >= 2
719 strings = [repr(polyhedron) for polyhedron in self.polyhedra]
720 return 'Or({})'.format(', '.join(strings))
721
722 def _repr_latex_(self):
723 strings = []
724 for polyhedron in self.polyhedra:
725 strings.append('({})'.format(polyhedron._repr_latex_().strip('$')))
726 return '${}$'.format(' \\vee '.join(strings))
727
728 @classmethod
729 def fromsympy(cls, expr):
730 """
731 Create a domain from a sympy expression.
732 """
733 import sympy
734 from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
735 funcmap = {
736 sympy.And: And, sympy.Or: Or, sympy.Not: Not,
737 sympy.Lt: Lt, sympy.Le: Le,
738 sympy.Eq: Eq, sympy.Ne: Ne,
739 sympy.Ge: Ge, sympy.Gt: Gt,
740 }
741 if expr.func in funcmap:
742 args = [Domain.fromsympy(arg) for arg in expr.args]
743 return funcmap[expr.func](*args)
744 elif isinstance(expr, sympy.Expr):
745 return LinExpr.fromsympy(expr)
746 raise ValueError('non-domain expression: {!r}'.format(expr))
747
748 def tosympy(self):
749 """
750 Convert the domain to a sympy expression.
751 """
752 import sympy
753 polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
754 return sympy.Or(*polyhedra)
755
756
757 def And(*domains):
758 """
759 Create the intersection domain of the domains given in arguments.
760 """
761 if len(domains) == 0:
762 from .polyhedra import Universe
763 return Universe
764 else:
765 return domains[0].intersection(*domains[1:])
766 And.__doc__ = Domain.intersection.__doc__
767
768 def Or(*domains):
769 """
770 Create the union domain of the domains given in arguments.
771 """
772 if len(domains) == 0:
773 from .polyhedra import Empty
774 return Empty
775 else:
776 return domains[0].union(*domains[1:])
777 Or.__doc__ = Domain.union.__doc__
778
779 def Not(domain):
780 """
781 Create the complementary domain of the domain given in argument.
782 """
783 return ~domain
784 Not.__doc__ = Domain.complement.__doc__