1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
22 from . import islhelper
24 from .islhelper
import mainctx
, libisl
25 from .geometry
import GeometricObject
, Point
26 from .linexprs
import LinExpr
, Rational
27 from .domains
import Domain
32 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
37 class Polyhedron(Domain
):
39 A convex polyhedron (or simply "polyhedron") is the space defined by a
40 system of linear equalities and inequalities. This space can be
51 def __new__(cls
, equalities
=None, inequalities
=None):
53 Return a polyhedron from two sequences of linear expressions: equalities
54 is a list of expressions equal to 0, and inequalities is a list of
55 expressions greater or equal to 0. For example, the polyhedron
56 0 <= x <= 2, 0 <= y <= 2 can be constructed with:
58 >>> x, y = symbols('x y')
59 >>> square = Polyhedron([], [x, 2 - x, y, 2 - y])
61 It may be easier to use comparison operators LinExpr.__lt__(),
62 LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(),
63 Le(), Eq(), Ge() and Gt(), using one of the following instructions:
65 >>> x, y = symbols('x y')
66 >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
67 >>> square = Le(0, x, 2) & Le(0, y, 2)
69 It is also possible to build a polyhedron from a string.
71 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
73 Finally, a polyhedron can be constructed from a GeometricObject
74 instance, calling the GeometricObject.aspolyedron() method. This way, it
75 is possible to compute the polyhedral hull of a Domain instance, i.e.,
76 the convex hull of two polyhedra:
78 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
79 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
80 >>> Polyhedron(square | square2)
82 if isinstance(equalities
, str):
83 if inequalities
is not None:
84 raise TypeError('too many arguments')
85 return cls
.fromstring(equalities
)
86 elif isinstance(equalities
, GeometricObject
):
87 if inequalities
is not None:
88 raise TypeError('too many arguments')
89 return equalities
.aspolyhedron()
91 if equalities
is not None:
92 for equality
in equalities
:
93 if not isinstance(equality
, LinExpr
):
94 raise TypeError('equalities must be linear expressions')
95 sc_equalities
.append(equality
.scaleint())
97 if inequalities
is not None:
98 for inequality
in inequalities
:
99 if not isinstance(inequality
, LinExpr
):
100 raise TypeError('inequalities must be linear expressions')
101 sc_inequalities
.append(inequality
.scaleint())
102 symbols
= cls
._xsymbols
(sc_equalities
+ sc_inequalities
)
103 islbset
= cls
._toislbasicset
(sc_equalities
, sc_inequalities
, symbols
)
104 return cls
._fromislbasicset
(islbset
, symbols
)
107 def equalities(self
):
109 The tuple of equalities. This is a list of LinExpr instances that are
110 equal to 0 in the polyhedron.
112 return self
._equalities
115 def inequalities(self
):
117 The tuple of inequalities. This is a list of LinExpr instances that are
118 greater or equal to 0 in the polyhedron.
120 return self
._inequalities
123 def constraints(self
):
125 The tuple of constraints, i.e., equalities and inequalities. This is
126 semantically equivalent to: equalities + inequalities.
128 return self
._equalities
+ self
._inequalities
134 def make_disjoint(self
):
137 def isuniverse(self
):
138 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
140 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
141 libisl
.isl_basic_set_free(islbset
)
144 def aspolyhedron(self
):
147 def convex_union(self
, *others
):
149 Return the convex union of two or more polyhedra.
152 if not isinstance(other
, Polyhedron
):
153 raise TypeError('arguments must be Polyhedron instances')
154 return Polyhedron(self
.union(*others
))
156 def __contains__(self
, point
):
157 if not isinstance(point
, Point
):
158 raise TypeError('point must be a Point instance')
159 if self
.symbols
!= point
.symbols
:
160 raise ValueError('arguments must belong to the same space')
161 for equality
in self
.equalities
:
162 if equality
.subs(point
.coordinates()) != 0:
164 for inequality
in self
.inequalities
:
165 if inequality
.subs(point
.coordinates()) < 0:
169 def subs(self
, symbol
, expression
=None):
170 equalities
= [equality
.subs(symbol
, expression
)
171 for equality
in self
.equalities
]
172 inequalities
= [inequality
.subs(symbol
, expression
)
173 for inequality
in self
.inequalities
]
174 return Polyhedron(equalities
, inequalities
)
176 def asinequalities(self
):
178 Express the polyhedron using inequalities, given as a list of
179 expressions greater or equal to 0.
181 inequalities
= list(self
.equalities
)
182 inequalities
.extend([-expression
for expression
in self
.equalities
])
183 inequalities
.extend(self
.inequalities
)
186 def widen(self
, other
):
188 Compute the standard widening of two polyhedra, à la Halbwachs.
190 In its current implementation, this method is slow and should not be
191 used on large polyhedra.
193 if not isinstance(other
, Polyhedron
):
194 raise TypeError('argument must be a Polyhedron instance')
195 inequalities1
= self
.asinequalities()
196 inequalities2
= other
.asinequalities()
198 for inequality1
in inequalities1
:
199 if other
<= Polyhedron(inequalities
=[inequality1
]):
200 inequalities
.append(inequality1
)
201 for inequality2
in inequalities2
:
202 for i
in range(len(inequalities1
)):
203 inequalities3
= inequalities1
[:i
] + inequalities
[i
+ 1:]
204 inequalities3
.append(inequality2
)
205 polyhedron3
= Polyhedron(inequalities
=inequalities3
)
206 if self
== polyhedron3
:
207 inequalities
.append(inequality2
)
209 return Polyhedron(inequalities
=inequalities
)
212 def _fromislbasicset(cls
, islbset
, symbols
):
213 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
216 for islconstraint
in islconstraints
:
217 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
218 constant
= islhelper
.isl_val_to_int(constant
)
220 for index
, symbol
in enumerate(symbols
):
221 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
,
222 libisl
.isl_dim_set
, index
)
223 coefficient
= islhelper
.isl_val_to_int(coefficient
)
225 coefficients
[symbol
] = coefficient
226 expression
= LinExpr(coefficients
, constant
)
227 if libisl
.isl_constraint_is_equality(islconstraint
):
228 equalities
.append(expression
)
230 inequalities
.append(expression
)
231 libisl
.isl_basic_set_free(islbset
)
232 self
= object().__new
__(Polyhedron
)
233 self
._equalities
= tuple(equalities
)
234 self
._inequalities
= tuple(inequalities
)
235 self
._symbols
= cls
._xsymbols
(self
.constraints
)
236 self
._dimension
= len(self
._symbols
)
240 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
241 dimension
= len(symbols
)
242 indices
= {symbol
: index
for index
, symbol
in enumerate(symbols
)}
243 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
244 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
245 islls
= libisl
.isl_local_space_from_space(islsp
)
246 for equality
in equalities
:
247 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
248 for symbol
, coefficient
in equality
.coefficients():
249 islval
= str(coefficient
).encode()
250 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
251 index
= indices
[symbol
]
252 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
253 libisl
.isl_dim_set
, index
, islval
)
254 if equality
.constant
!= 0:
255 islval
= str(equality
.constant
).encode()
256 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
257 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, islval
)
258 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
259 for inequality
in inequalities
:
260 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
261 for symbol
, coefficient
in inequality
.coefficients():
262 islval
= str(coefficient
).encode()
263 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
264 index
= indices
[symbol
]
265 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
266 libisl
.isl_dim_set
, index
, islval
)
267 if inequality
.constant
!= 0:
268 islval
= str(inequality
.constant
).encode()
269 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
270 islin
= libisl
.isl_constraint_set_constant_val(islin
, islval
)
271 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
275 def fromstring(cls
, string
):
276 domain
= Domain
.fromstring(string
)
277 if not isinstance(domain
, Polyhedron
):
278 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
283 for equality
in self
.equalities
:
284 left
, right
, swap
= 0, 0, False
285 for i
, (symbol
, coefficient
) in enumerate(equality
.coefficients()):
287 left
+= coefficient
* symbol
289 right
-= coefficient
* symbol
292 if equality
.constant
> 0:
293 left
+= equality
.constant
295 right
-= equality
.constant
297 left
, right
= right
, left
298 strings
.append('{} == {}'.format(left
, right
))
299 for inequality
in self
.inequalities
:
301 for symbol
, coefficient
in inequality
.coefficients():
303 left
-= coefficient
* symbol
305 right
+= coefficient
* symbol
306 if inequality
.constant
< 0:
307 left
-= inequality
.constant
309 right
+= inequality
.constant
310 strings
.append('{} <= {}'.format(left
, right
))
311 if len(strings
) == 1:
314 return 'And({})'.format(', '.join(strings
))
316 def _repr_latex_(self
):
318 for equality
in self
.equalities
:
319 strings
.append('{} = 0'.format(equality
._repr
_latex
_().strip('$')))
320 for inequality
in self
.inequalities
:
321 strings
.append('{} \\ge 0'.format(inequality
._repr
_latex
_().strip('$')))
322 return '$${}$$'.format(' \\wedge '.join(strings
))
325 def fromsympy(cls
, expr
):
326 domain
= Domain
.fromsympy(expr
)
327 if not isinstance(domain
, Polyhedron
):
328 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
334 for equality
in self
.equalities
:
335 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
336 for inequality
in self
.inequalities
:
337 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
338 return sympy
.And(*constraints
)
341 class EmptyType(Polyhedron
):
343 The empty polyhedron, whose set of constraints is not satisfiable.
347 self
= object().__new
__(cls
)
348 self
._equalities
= (Rational(1),)
349 self
._inequalities
= ()
354 def widen(self
, other
):
355 if not isinstance(other
, Polyhedron
):
356 raise ValueError('argument must be a Polyhedron instance')
362 def _repr_latex_(self
):
363 return '$$\\emptyset$$'
368 class UniverseType(Polyhedron
):
370 The universe polyhedron, whose set of constraints is always satisfiable,
375 self
= object().__new
__(cls
)
376 self
._equalities
= ()
377 self
._inequalities
= ()
385 def _repr_latex_(self
):
388 Universe
= UniverseType()
391 def _pseudoconstructor(func
):
392 @functools.wraps(func
)
393 def wrapper(expr1
, expr2
, *exprs
):
394 exprs
= (expr1
, expr2
) + exprs
396 if not isinstance(expr
, LinExpr
):
397 if isinstance(expr
, numbers
.Rational
):
398 expr
= Rational(expr
)
400 raise TypeError('arguments must be rational numbers '
401 'or linear expressions')
408 Create the polyhedron with constraints expr1 < expr2 < expr3 ...
411 for left
, right
in zip(exprs
, exprs
[1:]):
412 inequalities
.append(right
- left
- 1)
413 return Polyhedron([], inequalities
)
418 Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
421 for left
, right
in zip(exprs
, exprs
[1:]):
422 inequalities
.append(right
- left
)
423 return Polyhedron([], inequalities
)
428 Create the polyhedron with constraints expr1 == expr2 == expr3 ...
431 for left
, right
in zip(exprs
, exprs
[1:]):
432 equalities
.append(left
- right
)
433 return Polyhedron(equalities
, [])
438 Create the domain such that expr1 != expr2 != expr3 ... The result is a
439 Domain object, not a Polyhedron.
442 for left
, right
in zip(exprs
, exprs
[1:]):
443 domain
&= ~
Eq(left
, right
)
449 Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
452 for left
, right
in zip(exprs
, exprs
[1:]):
453 inequalities
.append(left
- right
)
454 return Polyhedron([], inequalities
)
459 Create the polyhedron with constraints expr1 > expr2 > expr3 ...
462 for left
, right
in zip(exprs
, exprs
[1:]):
463 inequalities
.append(left
- right
- 1)
464 return Polyhedron([], inequalities
)