1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
22 from . import islhelper
24 from .islhelper
import mainctx
, libisl
25 from .geometry
import GeometricObject
, Point
26 from .linexprs
import LinExpr
, Rational
27 from .domains
import Domain
32 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
37 class Polyhedron(Domain
):
39 A convex polyhedron (or simply "polyhedron") is the space defined by a
40 system of linear equalities and inequalities. This space can be
51 def __new__(cls
, equalities
=None, inequalities
=None):
53 Return a polyhedron from two sequences of linear expressions: equalities
54 is a list of expressions equal to 0, and inequalities is a list of
55 expressions greater or equal to 0. For example, the polyhedron
56 0 <= x <= 2, 0 <= y <= 2 can be constructed with:
58 >>> x, y = symbols('x y')
59 >>> square = Polyhedron([], [x, 2 - x, y, 2 - y])
61 It may be easier to use comparison operators LinExpr.__lt__(),
62 LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(),
63 Le(), Eq(), Ge() and Gt(), using one of the following instructions:
65 >>> x, y = symbols('x y')
66 >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
67 >>> square = Le(0, x, 2) & Le(0, y, 2)
69 It is also possible to build a polyhedron from a string.
71 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
73 Finally, a polyhedron can be constructed from a GeometricObject
74 instance, calling the GeometricObject.aspolyedron() method. This way, it
75 is possible to compute the polyhedral hull of a Domain instance, i.e.,
76 the convex hull of two polyhedra:
78 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
79 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
80 >>> Polyhedron(square | square2)
82 if isinstance(equalities
, str):
83 if inequalities
is not None:
84 raise TypeError('too many arguments')
85 return cls
.fromstring(equalities
)
86 elif isinstance(equalities
, GeometricObject
):
87 if inequalities
is not None:
88 raise TypeError('too many arguments')
89 return equalities
.aspolyhedron()
90 if equalities
is None:
93 for i
, equality
in enumerate(equalities
):
94 if not isinstance(equality
, LinExpr
):
95 raise TypeError('equalities must be linear expressions')
96 equalities
[i
] = equality
.scaleint()
97 if inequalities
is None:
100 for i
, inequality
in enumerate(inequalities
):
101 if not isinstance(inequality
, LinExpr
):
102 raise TypeError('inequalities must be linear expressions')
103 inequalities
[i
] = inequality
.scaleint()
104 symbols
= cls
._xsymbols
(equalities
+ inequalities
)
105 islbset
= cls
._toislbasicset
(equalities
, inequalities
, symbols
)
106 return cls
._fromislbasicset
(islbset
, symbols
)
109 def equalities(self
):
111 The tuple of equalities. This is a list of LinExpr instances that are
112 equal to 0 in the polyhedron.
114 return self
._equalities
117 def inequalities(self
):
119 The tuple of inequalities. This is a list of LinExpr instances that are
120 greater or equal to 0 in the polyhedron.
122 return self
._inequalities
125 def constraints(self
):
127 The tuple of constraints, i.e., equalities and inequalities. This is
128 semantically equivalent to: equalities + inequalities.
130 return self
._equalities
+ self
._inequalities
136 def make_disjoint(self
):
139 def isuniverse(self
):
140 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
142 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
143 libisl
.isl_basic_set_free(islbset
)
146 def aspolyhedron(self
):
149 def __contains__(self
, point
):
150 if not isinstance(point
, Point
):
151 raise TypeError('point must be a Point instance')
152 if self
.symbols
!= point
.symbols
:
153 raise ValueError('arguments must belong to the same space')
154 for equality
in self
.equalities
:
155 if equality
.subs(point
.coordinates()) != 0:
157 for inequality
in self
.inequalities
:
158 if inequality
.subs(point
.coordinates()) < 0:
162 def subs(self
, symbol
, expression
=None):
163 equalities
= [equality
.subs(symbol
, expression
)
164 for equality
in self
.equalities
]
165 inequalities
= [inequality
.subs(symbol
, expression
)
166 for inequality
in self
.inequalities
]
167 return Polyhedron(equalities
, inequalities
)
169 def _asinequalities(self
):
170 inequalities
= list(self
.equalities
)
171 inequalities
.extend([-expression
for expression
in self
.equalities
])
172 inequalities
.extend(self
.inequalities
)
175 def widen(self
, other
):
177 Compute the standard widening of two polyhedra, à la Halbwachs.
179 if not isinstance(other
, Polyhedron
):
180 raise ValueError('argument must be a Polyhedron instance')
181 inequalities1
= self
._asinequalities
()
182 inequalities2
= other
._asinequalities
()
184 for inequality1
in inequalities1
:
185 if other
<= Polyhedron(inequalities
=[inequality1
]):
186 inequalities
.append(inequality1
)
187 for inequality2
in inequalities2
:
188 for i
in range(len(inequalities1
)):
189 inequalities3
= inequalities1
[:i
] + inequalities
[i
+ 1:]
190 inequalities3
.append(inequality2
)
191 polyhedron3
= Polyhedron(inequalities
=inequalities3
)
192 if self
== polyhedron3
:
193 inequalities
.append(inequality2
)
195 return Polyhedron(inequalities
=inequalities
)
198 def _fromislbasicset(cls
, islbset
, symbols
):
199 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
202 for islconstraint
in islconstraints
:
203 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
204 constant
= islhelper
.isl_val_to_int(constant
)
206 for index
, symbol
in enumerate(symbols
):
207 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
,
208 libisl
.isl_dim_set
, index
)
209 coefficient
= islhelper
.isl_val_to_int(coefficient
)
211 coefficients
[symbol
] = coefficient
212 expression
= LinExpr(coefficients
, constant
)
213 if libisl
.isl_constraint_is_equality(islconstraint
):
214 equalities
.append(expression
)
216 inequalities
.append(expression
)
217 libisl
.isl_basic_set_free(islbset
)
218 self
= object().__new
__(Polyhedron
)
219 self
._equalities
= tuple(equalities
)
220 self
._inequalities
= tuple(inequalities
)
221 self
._symbols
= cls
._xsymbols
(self
.constraints
)
222 self
._dimension
= len(self
._symbols
)
226 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
227 dimension
= len(symbols
)
228 indices
= {symbol
: index
for index
, symbol
in enumerate(symbols
)}
229 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
230 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
231 islls
= libisl
.isl_local_space_from_space(islsp
)
232 for equality
in equalities
:
233 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
234 for symbol
, coefficient
in equality
.coefficients():
235 islval
= str(coefficient
).encode()
236 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
237 index
= indices
[symbol
]
238 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
239 libisl
.isl_dim_set
, index
, islval
)
240 if equality
.constant
!= 0:
241 islval
= str(equality
.constant
).encode()
242 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
243 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, islval
)
244 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
245 for inequality
in inequalities
:
246 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
247 for symbol
, coefficient
in inequality
.coefficients():
248 islval
= str(coefficient
).encode()
249 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
250 index
= indices
[symbol
]
251 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
252 libisl
.isl_dim_set
, index
, islval
)
253 if inequality
.constant
!= 0:
254 islval
= str(inequality
.constant
).encode()
255 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
256 islin
= libisl
.isl_constraint_set_constant_val(islin
, islval
)
257 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
261 def fromstring(cls
, string
):
262 domain
= Domain
.fromstring(string
)
263 if not isinstance(domain
, Polyhedron
):
264 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
269 for equality
in self
.equalities
:
270 strings
.append('Eq({}, 0)'.format(equality
))
271 for inequality
in self
.inequalities
:
272 strings
.append('Ge({}, 0)'.format(inequality
))
273 if len(strings
) == 1:
276 return 'And({})'.format(', '.join(strings
))
278 def _repr_latex_(self
):
280 for equality
in self
.equalities
:
281 strings
.append('{} = 0'.format(equality
._repr
_latex
_().strip('$')))
282 for inequality
in self
.inequalities
:
283 strings
.append('{} \\ge 0'.format(inequality
._repr
_latex
_().strip('$')))
284 return '$${}$$'.format(' \\wedge '.join(strings
))
287 def fromsympy(cls
, expr
):
288 domain
= Domain
.fromsympy(expr
)
289 if not isinstance(domain
, Polyhedron
):
290 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
296 for equality
in self
.equalities
:
297 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
298 for inequality
in self
.inequalities
:
299 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
300 return sympy
.And(*constraints
)
303 class EmptyType(Polyhedron
):
305 The empty polyhedron, whose set of constraints is not satisfiable.
308 __slots__
= Polyhedron
.__slots
__
311 self
= object().__new
__(cls
)
312 self
._equalities
= (Rational(1),)
313 self
._inequalities
= ()
318 def widen(self
, other
):
319 if not isinstance(other
, Polyhedron
):
320 raise ValueError('argument must be a Polyhedron instance')
326 def _repr_latex_(self
):
327 return '$$\\emptyset$$'
332 class UniverseType(Polyhedron
):
334 The universe polyhedron, whose set of constraints is always satisfiable,
338 __slots__
= Polyhedron
.__slots
__
341 self
= object().__new
__(cls
)
342 self
._equalities
= ()
343 self
._inequalities
= ()
351 def _repr_latex_(self
):
354 Universe
= UniverseType()
357 def _polymorphic(func
):
358 @functools.wraps(func
)
359 def wrapper(left
, right
):
360 if not isinstance(left
, LinExpr
):
361 if isinstance(left
, numbers
.Rational
):
362 left
= Rational(left
)
364 raise TypeError('left must be a a rational number '
365 'or a linear expression')
366 if not isinstance(right
, LinExpr
):
367 if isinstance(right
, numbers
.Rational
):
368 right
= Rational(right
)
370 raise TypeError('right must be a a rational number '
371 'or a linear expression')
372 return func(left
, right
)
378 Create the polyhedron with constraints expr1 < expr2 < expr3 ...
380 return Polyhedron([], [right
- left
- 1])
385 Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
387 return Polyhedron([], [right
- left
])
392 Create the polyhedron with constraints expr1 == expr2 == expr3 ...
394 return Polyhedron([left
- right
], [])
399 Create the domain such that expr1 != expr2 != expr3 ... The result is a
400 Domain, not a Polyhedron.
402 return ~
Eq(left
, right
)
407 Create the polyhedron with constraints expr1 > expr2 > expr3 ...
409 return Polyhedron([], [left
- right
- 1])
414 Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
416 return Polyhedron([], [left
- right
])