Add GPL License
[linpy.git] / examples / diamonds.py
index 1bbfc2d..56af7e3 100755 (executable)
@@ -1,5 +1,22 @@
 #!/usr/bin/env python3
 
+"""
+    This file is part of Linpy.
+
+    Linpy is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    Linpy is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with Linpy.  If not, see <http://www.gnu.org/licenses/>.
+"""
+
 import matplotlib.pyplot as plt
 
 from matplotlib import pylab
@@ -9,14 +26,14 @@ from pypol import *
 
 x, y, z = symbols('x y z')
 
-fig = plt.figure()
+fig = plt.figure(facecolor='white')
 
-diam_plot = fig.add_subplot(2, 2, 1)
+diam_plot = fig.add_subplot(2, 2, 1, aspect='equal')
 diam_plot.set_title('Diamond')
 diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1)
 diam.plot(diam_plot, fill=True, edgecolor='red', facecolor='yellow')
 
-cham_plot = fig.add_subplot(2, 2, 2, projection='3d')
+cham_plot = fig.add_subplot(2, 2, 2, projection='3d', aspect='equal')
 cham_plot.set_title('Chamfered cube')
 cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \
     Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \
@@ -24,7 +41,7 @@ cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \
     Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y)
 cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75))
 
-rhom_plot = fig.add_subplot(2, 2, 3, projection='3d')
+rhom_plot = fig.add_subplot(2, 2, 3, projection='3d', aspect='equal')
 rhom_plot.set_title('Rhombicuboctahedron')
 rhom = cham & \
     Le(x + y + z, 7) & Ge(-2, -x - y - z) & \
@@ -33,7 +50,7 @@ rhom = cham & \
     Le(-1, -x + y + z) & Le(-x + y + z, 4)
 rhom.plot(rhom_plot, facecolors=(0, 1, 0, 0.75))
 
-cubo_plot = fig.add_subplot(2, 2, 4, projection='3d')
+cubo_plot = fig.add_subplot(2, 2, 4, projection='3d', aspect='equal')
 cubo_plot.set_title('Truncated cuboctahedron')
 cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \
     Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \
@@ -44,4 +61,7 @@ cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \
     Le(-2, -x + y + z) & Le(-x + y + z, 7) & \
     Le(-2, x + y - z) & Le(x + y - z, 7)
 cubo.plot(cubo_plot, facecolors=(0, 0, 1, 0.75))
+
 pylab.show()
+
+# Copyright 2014 MINES ParisTech